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The Mystery of Electroweak Symmetry Breaking

2. Technicolor

In the previous lecture, I explained that spontaneous breaking if the SU(2) x U(1)
symmetry is an essential part of the SM. I reviewed the model in which the symmetry
is broken by a single Higgs scalar field ¢ and pointed out some of its good properties.
You have also heard at this school that the properties of the Higgs boson predicted
in this model are in good accord with the first experimental results from the LHC. So
it is reasonable to ask whether there is anything wrong with this model that would
keep us from saying that we understand the underlying mechanism of EWSB.

Unfortunately, the model with a single Higgs field gives us no understanding of
the origin of EWSB. What is the reason that electroweak symmetry is broken in this
model? The most general renormalizable potential for the field ¢ is
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The point ¢ = 0 is unstable if u? < 0. This is the complete extent of the explanation
for EWSB in the SM. The parameters u? and ) are renormalizable coupling that must
be specified in advance to define the theory. There is no asking why these parameters
have the values that the are measured to have.

I have discussed the renomalization of A in the previous lecture. If A is set at at
some high mass scale such as the Planck scale, it changes slowly with log @ to its
value at the TeV scale (though, if the SM is taken literally, the value at the Planck
scale would be negative). The renormalization of p? has a different structure. This
parameter receives additive divergent corrections. At one loop order, the formula for
u? is
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The radiative corrections to u? are of both signs and are extremely sensitive to the
ultraviolet cutoff. It is very difficult to understand why u? has its observed order of
magnitude of about (100 GeV)?. If the cutoff is much larger than 1 TeV, this can only
come about through a cancellation of large corrections. Also, the sign of y? cannot
be predicted. Which set of diagrams dominate depends on exactly how the various
contributions are regularized. If we naively put A = mp; into all three terms, the
observed value of u? requires a cancellation of these terms against the bare value of
12 in the first 30 decimal places.

A way to describe the results of the previous paragraph is that the SM has no
prediction for the presence of EWSB or for the magnitude of the symmetry-breaking
vacuum expectation value. EWSB is put in by hand. This is not the sort of explana-
tion usually deemed acceptable in physics.

How can we do better? The concept of spontaneous symmetry breaking came to
particle physics from condensed matter physics, where there are concrete examples
of this phenomenon. In many condensed matter systems, there is a symmetry of the
Hamiltonian that is not a symmetry of the ground state. These include magnets,
superconductors and superfluids, binary alloys, and liquid crystals. Each of these
systems has fascinating properties resulting from the symmetry breaking. The laws
of physics that apply in each case are just the simple laws of the non-relativistic
quantum mechanics of atoms. But, in each, case, there is a particular, quite nontrivial,
mechanism by which the minimization of the ground state energy leads to symmetry
breaking.

Particle physicists should know these systems better. I would like to discuss, in
particular, the origin of superconductivity.

A superconductor is a metal that conducts electricity with zero resistance. Most
metals are superconducting at sufficiently low temperature. This was a major puzzle
in solid state physics through the first half of the twentieth centure. Very low tem-
peratures are required, of order 1° K while the Fermi energy of electrons in a metal
is of order 10* ° K. Both parts of the phenomenon needed explanation.

We can make a model of zero resistance flow of current by imagining that the
metal contains a scalar field with nonzero electric charge. The U(1) gauge symmetry
of electromagnetism transforms the electron field as
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If the scalar field has charge @, it transforms as
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If ®(z) obtains a vacuum expectation value, the U(1) symmetry is broken. The U(1)
current is
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where m is the mass of the electron and M is a phenomenologically determined mass
for the ® field. Assume that the ground state of the Hamiltonian has
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Equally well, by symmetry, we could have any of the ground states
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Now consider the state with
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This state has a very low energy, proportional to k%, and it has nonzero current
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It can be shown thata, for sufficiently small k, this is the state of lowest energy for
momentum k. Then it cannot decay, and the current flows frictionlessly.

There is another interesting phenomenon associated with the field ®. In a 2-
dimensional slab of superconductor, there are field configurations of finite energy
with
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so if |[D®|? is to go to zero at large r,
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Then, around a large circle at infinity,
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More explicitly, restoring factors of /i and ¢, the magnetic flux piercing the super-
conductor is quantized, in units of
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The quantization of magnetic flux in a superconductor was observed in 1961 by Deaver
and Fairbank; they found |Q| = 2, that is, the condensate field ® has the charge of 2
electrons.

In 1950, Ginzburg and Landau wrote a phenomenological theory of superconduc-
tivity based on the field ®(z). Essentially, they described ® by an effective free energy
of the form
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in order to make u? negative at 7' = 0. This leads to a very useful theory that allows
one to calculate many properties of a superconductor, including the structure of the
magnetic flux tubes described above, the critical current, the thermodynamics of the
phase transition, and many other properties. However, it does not explain why metals
are superconducting at low temperatures.

Fortunately, there was more physics to be learned. An important realization
was that there is a small attractive interaction between electrons in a metal. The
repulsive Coulomb interaction between conduction electrons is mainly screened by
inner atomic electrons. However, electrons can interact by scattering from nuclei and
creating lattice vibrations (phonons) that then affect other electrons. The interaction

is of the form
b
~ ~ (& 6) (q’ ‘-l’) 2 ‘-()

3 °t>3 7R

where ¢ is the speed of sound. For small ¢° and finite ¢, there is an attractive potential,
as usual for scalar boson exchange. A typical wymomentum transfer will be of the
order of the Fermi momentum in the metal
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It is a good approximation to treat this as a small attractive local interaction
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where a, b =1, ] are spin indices.

In the presence of this interaction, the Schrodinger equation for electrons in the
metal takes the form
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Then
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The system opens up an energy gap at the Fermi surface
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decreasing the energy of the system. The gap parameter A is found by the self-
consistent equation (called the gap equation)
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Evaluating the de integral by Contours,
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The integral seems divergent, but, in a metal, the integral is cut off by the Debye
energy wp, the largest possible energy of a phonon. We find
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Remarkably, the gap equation can be satisfied with nonzero A for any arbitrarily
weak attractive interaction among electrons. The form of this equation explains why
A can be nonzero but extremely small compared to the typical energies in a metal.

An expectation value A # 0 is incompatible with the original U(1) symmetry of
electron number. This symmetry is spontaneously broken. This is also the gauge
symmetry of electromagnetism. So, the photon must obtain a mass in a supercon-
ductor through the Higgs mechanism. This gives rise to the exclusion of magnetic
flux by superconductors, the Meissner effect.
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There is much more to say about superconductivity. A good starting point is
Tinkham’s book Introduction to Superconductivity. Now I would like to apply these
ideas to make a theory of EWSB.

The discussion I have just given of symmetry breaking in superconductivity has a
direct analog for massless fermions in 4-dimensional quantum field theory. This was
first recognized by Nambu and Jona-Lasinio in a classic paper, Phys. Rev. 122, 345
(1961). I recommend this paper highly.



The analogy is as follows: If we have a theory with massless fermions and attractive
interactions, the fermions might pair up, form a condensate in the vacuum, and open
a gap in their energy spectrum. A gap at zero energy is exactly the generation of a
fermion mass. The pairs that condense must have zero total momentum and angular
momentum. This is satisfied for pairs such as

that is, pairs of frf; and frfr. Remember that the antiparticle of fr is fr and
vice versa. So these pairs have nonzero charges under the separate fermion number
symmetries of ¢ and 9r. The condensation of pairs breaks these symmetries and
allows the generation of mass for the fermions.

I will discuss this pair condensation first in the more familiar setting of 2-flavor
QCD. The masses of the u and d quarks are small, and it is a good first approximation
to neglect them. In this limit, the QCD Lagrangian is

L - LmYr 0EDE - Q' sDQ,

where
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This has U(2) x U(2) symmetry
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The overall U(1) symmetry is associated with baryon number. It can be shown that
the axial U(1) symmetry
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is broken explicitly by non-perturbative effects of the QCD gluon field. Then we have
the symmetry group
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called chiral symmetry.

Condensation of quark-antiquarks as discussed above give nonzero vacuum expec-
tation values
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which is known to be a good approximate symmetry of QCD. The 3 broken generators
of the original symmetry group give rise to 3 Goldstone bosons 7, created from the
vacuum by the broken symmetry currents
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The matrix elements for creation or annihilation of Goldstone bosons can be written
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where f, is a nonzero constant called the pion decay constant. In QCD; fr = 93 MeV.
The ¢ form a parity —1, I = 1 multiplet of states that is naturally identified with
the three pi mesons.

If we turn to u and d quark masses back on, it can be shown that we find the
relation
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which explains why m2/ mf, ~ 1%. The complete phenomenological picture of, 7
meson interactions can be explained by their identification as Goldstone bosons. You
can find a detailed discussion of this in the book of Donoghue, Golowich, and Holstein,
Dynamics of the Standard Model, Chapter V1.

The major difficulty with this understanding of QCD is that it s not straightfor-
ward to compute A from first principles. The leading order form of the gap equation
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where M is the generated mass for the u and d quarks. Roughly,
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Unfortunately, this equation does not have the same excellent infrared singularity
that we saw in BCS theory. For ¢? — 0, the integral over k behaves as
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which is nonsingular as M — 0. So we do not have symmetry breaking at arbitrarily
weak coupling but only for
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Presumably, due to the opposite of asymptotic freedom, this criterion is satisfied in
QCD for sufficiently small moment transfer. Lattice QCD simulations confirm that
<QEQ R> is indeed nonzero in the numerically generated QCD vacuum state.

The picture of spontaneous breaking of chiral symmetry is thus very successful
in the application to QCD. In 1978, Weinberg and Susskind suggested that this idea
could also be used as a mechanism for EWSB. Imagine that, in addition to QCD,
there is another strongly interacting gauge theory, just like 2-flavor QCD but at a
higher mass scale. We can call this new gauge theory technicolor. Technicolor will
have 2 flavors of massless techniquarks (U, D) and a global symmetry
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To build a theory of EWSB, couple (U, D) to the SM exactly as we couple (u, d)
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Before we turn on the SM gauge couplings, the technicolor sector generates 3 Gold-
stone bosons I1¢. These have a pion decay constant given by
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The technicolor theory also has a large number of Q@ bound states whose character-
istic mass is 47 F. (In QCD, 47 fr ~ 1 GeV.) In particular, there is a techni-p meson
that can be created by a virtual photon
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The breaking of the technicolor chiral symmetry implies mass generation for the
SM gauge bosons. Under the identified gauge symmetries of SU(2) x U(1), the

expectation value <QLQ R> transforms as
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the symmetries are not respected. However the specific transformation with o= -p
leaves the expectation value invariant, so one linear combination of A3 and B remains
massless to give a massless photon.

There is a way to compute the mass matrix of the weak bosons more explicitly.
Consider the gauge boson self-energy
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The Ward identity implies
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so 1%’ must have the form
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Any singularity of T1%° signals a massless boson that can be created by the gauge

currents. If there are no such massless particles, then
My ~q = (7°
and no mass is generated for the gauge bosons. On the other hand, if
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we find
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and the gauge bosons acquire a mass.

o

In this case, there are massless particles created by the gauge currents, namely,
the Goldstone bosons. For the SU(2) currents
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The contact piece of the self-energy is harder to evaluate directly, but it is constrained
by gauge invariance. Then
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and we recognize that this produces a mass for the SU(2) gauge bosons. Similarly,
the hypercharge current is
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so that

16



Col 3¢ 3 (Whd = (ig') ((Fq™) 4

We find the gauge boson mass matrix
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This is the same formula that we cound for the mass matrix of vector bosons in the

simple one-Higgs-scalar model. Actually, it is required that we obtain a mass matrix
of the same form, because we have satisfied the basic axioms leading to this result.
The theory has an unbroken U(1) gauge symmetry, and it has an unbroken custodial
SU(2) symmetry which, in this case, is the technicolor isospin symmetry. We can
now determine F by identifying it with the Higgs field vacuum value needed to get
the correct W and Z masses

¥ = 2% GV
Then the mass scale of technicolor bound states should be
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When we get access to such a high mass scale—and we are just now accessing this
energy at the LHC—we should see the techni-p as a resonance in WW and WZ
production.

This is a beautiful dynamical explanation of EWSB. It gives a physical explanation
for why electroweak symmetry is broken in the context of a testable model involving
new particles. Unfortunately, the model is not correct. There are three compelling
arguments against it.
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First, the model predicts signficant corrections to precisely measured weak-inter-
action couplings and masses that are not observed in the LEP and SLC experiments.
In particular, the techni-p constributions
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generate a pattern of shifts of observables from their SM values. For example,
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This is quantified by the S and T parameters of electroweak physics (which unfortu-
nately I do not have time to discuss in detail). The technicolor model I have described
predicts

Q ~ 0%

while the precision electroweak experiments give
S < o, % ! (ﬂo an‘( :

as shown in Figure 1. The techni-p decouples as 1/ szp, so to avoid this problem we
need to move the techni-p to above about 5 TeV. Unfortunately, we cannot do this
without also raising F' and thus raising the W mass.

Second, it is very difficult to give mass to quarks and leptons in this model. In
the one-Higgs-scalar model, we generated masses through couplings such as
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This operator has dimension 4 and so the coupling constant y, is dimensionless. The
term is a renormalizable interaction that could be generated at an arbitrarily high
mass scale.

In technicolor, there is no fundamental field . The symmetry is broken by the
expectation value of the operator Q}EQ 7. in principle, we could generate masses by
adding the Lagrangian a term
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But this is a dimension 6 operator, and so the coefficient G' ~ (mass)™?. A quark or
lepton mass generated by this term would be of the order of
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Eichten and Lane and Dimopoulos and Susskind suggested that we could generate this
term by postulating additional gauge interactions (ETC) linking the SM fermions and
technifermions, so that the mass for quarks and leptons is generated by a diagram
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However, this structure also requires ETC interactions among 4 SM fermions. These
generate dangerous flavor-changing neutral currents that contribute to processes such
as K — pp~ and the K° D° and BY mass differences.

It is possible that these problems could be solved if the dynamics of the technicolor
model differed in some way from that of QCD. In planetary physics, when we had one
example of a solar system, we assumed that all other solar systems in the universe were
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similar. This turned out not to be correct. In the same way, strong interactions can
behave differently for different gauge groups or representations, or even for different
values of ny/N, within QCD. Maybe there is a way out. '

However, there is now a third argument that is an absolute killer. In QCD, the
pseudoscalar mesons are the only bound states with have masses well below 4 f.
These are the states that become Goldstone bosons when the masses of u, d, and s
are taken to zero. The lightest scalar bound state of ¢g must be P-wave and has no
reason to be light. In QCD phenomenology, the lightest 07 state is the fo or o, an
extremely broad resonance at about 500 GeV barely visible as a feature in the S-wave
mm phase shift. Probably, this is a multiquark state, with the lightest ¢g state being
the fo(1500). There is no candidate in strongly coupled fermion theories for a light
and extremely narrow 07 state similar to the observed boson at 125 GeV.

So, we need to give up on this highly motivated dynamical theory of EWSB. We
have to find some alternative in which EWSB comes from the vacuum value of a
scalar field. In the next lecture, I will discuss a way to do that.
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