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Motivations 
•  cross sections in the Bjorken limit of QCD 

are expressed as a 1/Q2 “twist” expansion 

collinear factorization: parton content of proton described by kT-integrated distributions 
sufficient approximation for most high-pT processes 

 

TMD factorization: involves transverse-momentum-dependent (TMD) distributions 
needed in particular cases, TMD-pdfs are process dependent 
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collinear factorization: parton content of proton described by kT-integrated distributions 
sufficient approximation for most high-pT processes 

 

TMD factorization: involves transverse-momentum-dependent (TMD) distributions 
needed in particular cases, TMD-pdfs are process dependent 

•  cross sections in the Regge limit of QCD 

kT factorization: parton content described by unintegrated parton distributions (u-pdfs) 

we would like to understand:   - the connection between TMD & kT factorizations 
        - how TMD-pdfs and u-pdfs are related 

are expressed as a 1/s “eikonal” 
expansion 



Conclusions from talk 5 years ago 
•  considering the SIDIS process, we have shown that 

   
  TMD factorization (valid at large Q2) 
 and  kT factorization (valid at small x) 

 
are consistent with each other in the overlapping domain of validity 
 

•  the SIDIS measurement provides direct access to the transverse 
momentum distribution of partons 
 

 the saturation regime, characterized by      , 
 can be easily investigated 

 
 even if Q2 is much bigger than Qs

2, 
 the saturation regime will be important when 

 
•  this is an encouraging start, but now we would like to understand the 

relations between TMD and kT factorization breaking 
 
kT factorization breaking at small x is no obstacle, so perhaps we can 
learn from the CGC how to work around the TMD factorization breaking 
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•  this is an encouraging start, but now we would like to understand the 

relations between TMD and kT factorization breaking 
 
kT factorization breaking at small x is no obstacle, so perhaps we can 
learn from the CGC how to work around the TMD factorization breaking 

study process where factorization breaks: di-jets 
 (and forward production to have small x) 
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scanning the wave functions: 

central rapidities probe moderate x 
xp ~ xA < 1 

forward/central doesn’t probe much smaller x 
xp ~ 1, xA < 1 

xp increases    xA ~ unchanged 

forward rapidities probe small x 
xp ~ 1, xA << 1 

xp ~ unchanged    xA decreases 



Color Glass Condensate (CGC) 
calculation of forward di-jets 



Saturation calculation 
b: quark in the amplitude 
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b’: quark in the conj. amplitude 
x’: gluon in the conj. amplitude 

CM (2007) 
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Saturation calculation 

collinear factorization of quark density in deuteron  
Fourier transform k┴ and q┴ 
into transverse coordinates 

pQCD q → qg  
wavefunction 

b: quark in the amplitude 
x: gluon in the amplitude 
b’: quark in the conj. amplitude 
x’: gluon in the conj. amplitude 

interaction with target nucleus 
n-point functions that resums the powers of gS A and the powers of αS ln(1/xA) 

CM (2007) 



Scattering on the dense target 

scattering of a quark: 
•  this is described by Wilson lines 

dependence kept implicit in the following 

in the CGC framework, any cross-section is determined by colorless combinations of 
Wilson lines           , averaged over the CGC wave function ][][

2
ααα SDS xx ∫ Φ=][αS
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scattering of a quark: 
•  this is described by Wilson lines 

dependence kept implicit in the following 

in the CGC framework, any cross-section is determined by colorless combinations of 
Wilson lines           , averaged over the CGC wave function ][][

2
ααα SDS xx ∫ Φ=][αS

))()((1 1  ),( xyyx FF
c

qq WWTrNT +−=

x : quark transverse coordinate 
y : antiquark transverse coordinate 

the      dipole scattering amplitude: qq

this is the most common Wilson-line average 

•  the 2-point function or dipole amplitude 

or 



2-  4-  and 6-point functions 

the scattering off the CGC is expressed through the following correlators of Wilson lines: 

if the gluon is emitted before the interaction, four partons scatter off the CGC 

if the gluon is emitted after the interaction, only the quarks interact with the CGC 

interference terms, the gluon interacts in the amplitude only (or c.c. amplitude only) 

•  coming back to the double-inclusive cross-section 



The large-Nc limit 
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r = dipole size 

•  the 2-point function is fully constrained by e+A DIS and d+Au 
single hadron data N (x, r) ⌘ 1� S

(2)they are obtained from the 
dipole scattering amplitude 



Connections with 
high-energy factorization 

and TMD factorization 



The linear regime 

•  taking all involved momenta >> Qs, the CGC formula reduces to 

e.g. Kutak and Sapeta (2012) 
this is the so-called high-energy factorization (HEF) formula 

d�

pA!dijets+X

dy1dy2d
2
p1td

2
p2t

=
↵

2
s

⇡(x1x2s)2

X

a,c,d

x1fa/p(x1, µ
2) |Mag⇤!cd|2 Fg/A(x2, k

2
t )

1

1 + �cd
.

HEF and generalized TMD factorization

High Energy Factorization

d�pA!dijets+X

dy1dy2d2p1td2p2t
/

X

a,c,d

x1fa/p(x1, µ
2) |Mag⇤!cd |2Fg/A(x2, kt)

x1fa/p(x1, µ2) – collinear PDF in p, suitable for x1 ⇠ 1

|Mag⇤!cd |2 – matrix element with o↵-shell incoming gluon

Fg/A(x2, kt) – unintegrated gluon PDF in A, suitable for x2 ⌧ 1

Generalized TMD factorization

d�pA!dijets+X

dy1dy2d2p1td2p2t
/

X

a,c,d

x1fa/p(x1, µ
2)

X

i

H
(i)
ag!cdF

(i)
ag (x2, kt)

H
(i)
ag!cd – hard factor of i-th type, with on-shell incoming gluon

F (i)
ag (x2, kt) – unintegrated gluon distribution of i-th type in A
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the unintegrated gluon density involved is also the also involved in deep 
inelastic scattering, it is related to the dipole scattering amplitude 
 

N (x, r)

Fg/A(x, k
2) =

Nc

↵s(2⇡)3

Z
d

2
b

Z
d

2
r e

�ik·rr2
r N (x, r)

HEF and generalized TMD factorization

High Energy Factorization

d�pA!dijets+X

dy1dy2d2p1td2p2t
/

X

a,c,d

x1fa/p(x1, µ
2) |Mag⇤!cd |2Fg/A(x2, kt)

x1fa/p(x1, µ2) – collinear PDF in p, suitable for x1 ⇠ 1

|Mag⇤!cd |2 – matrix element with o↵-shell incoming gluon

Fg/A(x2, kt) – unintegrated gluon PDF in A, suitable for x2 ⌧ 1

Generalized TMD factorization

d�pA!dijets+X

dy1dy2d2p1td2p2t
/

X

a,c,d

x1fa/p(x1, µ
2)

X

i

H
(i)
ag!cdF

(i)
ag (x2, kt)

H
(i)
ag!cd – hard factor of i-th type, with on-shell incoming gluon

F (i)
ag (x2, kt) – unintegrated gluon distribution of i-th type in A

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 4

|p1t|, |p2t|, |kt| � Qs



Recall dilute-dense kinematics 
Forward dijets in dilute-dense hadronic collisions

ŝ = (p + k)2

t̂ = (p2 � p)2

û = (p1 � p)2

Incoming partons’ energy fractions:

x1 = 1p
s
(|p1t |ey1 + |p2t |ey2)

x2 = 1p
s
(|p1t |e�y1 + |p2t |e�y2)

y1,y2�0�! x1 ⇠ 1

x2 ⌧ 1

Gluon’s transverse momentum (p1t , p2t imbalance):

|kt |2 = |p1t + p2t |2 = |p1t |2 + |p2t |2 + 2|p1t ||p2t | cos ��
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•  large-x projectile (proton) on small-x target (proton or nucleus) 

|p1t|, |p2t| � Qs however, |kt| can be small or large 
•  several momentum scales in the process 



The back-to-back regime 

•  a factorization can be established in the small x limit, for nearly 
back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011) 

but it involves six unintegrated gluon distributions         (2 per channel) 
 
and their associated hard matrix elements   are on-shell (i.e. kt = 0) 

Towards improved TMD factorization (step 1)

Notice that not all of the hard factors are independent

I H
(3)
gg!qq̄ = � 1

N2
c

�
H

(1)
gg!qq̄ + H

(2)
gg!qq̄

�

I H
(6)
gg!gg = H

(1)
gg!gg + H

(2)
gg!gg

H
(6)
gg!gg = �N2

c

2 H
(3)
gg!gg = N2

c H
(4)
gg!gg = N2

c H
(5)
gg!gg

That allows one to write a simpler, new factorization formula

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1, µ
2)

2X

i=1

K
(i)
ag!cd�(i)

ag!cd

1

1 + �cd

where

K
(i)
ag!cd – new hard factors; linear combinations of H

(i)
ag!cd

�(i)
ag!cd – new TMDs; linear combinations of F (i)

ag

I This structure will become natural in the context of colour ordered amplitudes.
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this is the so-called Transverse Momentum Dependent (TMD) factorization formula 

K(i)
ag!cd

�(i)
ag!cd(x2, k

2
t )

e.g. Bomhof, Mulders and Pijlman (2006) 

|p1t|, |p2t| � |kt|, Qs



The back-to-back regime 

•  a factorization can be established in the small x limit, for nearly 
back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011) 

but it involves six unintegrated gluon distributions         (2 per channel) 
 
and their associated hard matrix elements   are on-shell (i.e. kt = 0) 

•  only valid in asymmetric situations 

does not apply with unintegrated parton densities for both colliding projectiles 

Collins and Qiu (2007), Xiao and Yuan (2010) 
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TMD gluon distributions 

TMD gluon distribution (first try)

Fg/A(x2, kt)
naive
= 2

Z
d⇠+d2⇠t

(2⇡)3p�A
e ix2p

�
A ⇠+�ikt ·⇠t

⌦
A|Tr

⇥
F i� �

⇠+, ⇠t

�
F i� (0)

⇤
|A

↵

This definition is gauge dependent!
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•  the naive operator definition is not gauge-invariant 
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•  the naive operator definition is not gauge-invariant 

TMD gluon distributions (proper definition)

+ +

+ similar diagrams with 2, 3, . . . gluon exchanges

They all contribute at leading power and need to be resummed.

That is done by gauge links U[↵,�]

Fg/A(x2, kt) = 2

Z
d⇠+d2⇠t

(2⇡)3p�A
e ix2p

�
A ⇠+�ikt ·⇠t

⌦
A|Tr

⇥
F i� �

⇠+, ⇠t

�
U[⇠,0]F

i� (0)
⇤
|A

↵

I U[↵,�] renders gluon distribution gauge invariant
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this is done by including gauge links in the operator definition 

•  a theoretically consistent definition requires to include more diagrams  
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Process-dependent TMDs 
•  the proper operator definition(s) 

however, the precise structure of the gauge links is process-dependent, 
since it is determined by the color structure of the hard process H 

some gauge link 

Gauge links

Wilson lines along the path from ↵ to �

W[↵,�] = P exp

"
�ig

Z �

↵
d⌘µAa(⌘)T a

#

The path [↵,�] depends on the hard process.

I Gluon TMD, F , is in general process-dependent.

Cross section for dijet production in hadron-hadron collisions cannot be
written down with just a single gluon! [Bomhof, Mulders, Pijlman 2006]

F (1)
qg ,F (2)

qg

F (1)
gg ,F (2)

gg ,F (3)
gg ,F (4)

gg ,F (5)
gg ,F (6)

gg
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Process-dependent TMDs 
•  the proper operator definition(s) 

however, the precise structure of the gauge links is process-dependent, 
since it is determined by the color structure of the hard process H 

some gauge link 

example for the     channel 
 

each diagram generates 
a different gluon distribution 

qg ! qg

•  in general, several gluon distributions are needed already for a 
single process 
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in the large kt limit, the process dependence 
of the gauge links disappears (like for the integrated gluon distribution) up to 

      corrections, and a single gluon distribution is sufficient O �
Q2

s/k
2
t

�
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The six TMD gluon distributions 
•  correspond to a different gauge-link structure 

Z µ2

d

2
kt �

(i)
ag!cd(x2, k

2
t ) = x2f(x2, µ

2)

several paths are possible for the gauge links 

•  when integrated, they all coincide 
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�
U[⇠,0]F

i� (0)
⇤
|A

↵

I U[↵,�] renders gluon distribution gauge invariant
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The six TMD gluon distributions 
•  correspond to a different gauge-link structure 

Z µ2

d

2
kt �

(i)
ag!cd(x2, k

2
t ) = x2f(x2, µ

2)

several paths are possible for the gauge links 

•  when integrated, they all coincide 

•  they are independent and in general they all should be extracted 
from data 

only one of them has the probabilistic interpretion 
of the number density of gluons at small x2 

•  in the Color Glass Condensate, (using some approximations), 
one can obtain relations between them 



Some numerical results 
the five gluon TMDs which survive in the large Nc limit 



Combining both limits into a 
common factorization formula 



Improved TMD factorization formula 
Improved TMD factorization

The final formula

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1, µ
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2X
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ag⇤!cd�(i)
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1 + �cd
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(s4+t4+u4)(uû+tt̂)
t̄ t̂ ūûs̄ ŝ
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t̄ t̂ ūûs̄ ŝ

K (i)
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1
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sŝ t̂û

1
4N2

c CF

(t2+u2)(uû+tt̂�sŝ)
sŝ t̂û
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2tt̂ŝ
(1 + sŝ�tt̂

N2
c uû

) �CF
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s(s2+u2)
tt̂û

Modified Mandelstam variables:

I
s̄ = (x2pA + p)2, t̄ = (x2pA � p1)

2, ū = (x2pA � p2)
2

Recovery of the on-shell limit:

I lim|kt |!0(s̄ � ŝ) = 0, lim|kt |!0(t̄ � t̂) = 0, lim|kt |!0(ū � û) = 0
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practical for for an arbitrary |kt| value 

the new off-shell hard factors         can be computed from 
Feynman diagrams, or from color-ordered amplitudes  

K(i)
ag⇤!cd

|p1t|, |p2t| � Qs
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practical for for an arbitrary |kt| value 

the new off-shell hard factors         can be computed from 
Feynman diagrams, or from color-ordered amplitudes  

K(i)
ag⇤!cd

|p1t|, |p2t| � Qs

•  in the back-to-back limit  

and the TMD formula is recovered K(i)
ag⇤!cd ! K(i)

ag!cd

|p1t|, |p2t| � |kt|, Qs
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Modified Mandelstam variables:

I
s̄ = (x2pA + p)2, t̄ = (x2pA � p1)
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practical for for an arbitrary |kt| value 

the new off-shell hard factors         can be computed from 
Feynman diagrams, or from color-ordered amplitudes  

K(i)
ag⇤!cd

|p1t|, |p2t| � Qs

•  in the back-to-back limit  

and the TMD formula is recovered K(i)
ag⇤!cd ! K(i)

ag!cd

|p1t|, |p2t| � |kt|, Qs

2X

i=1

K(i)
ag⇤!cd = |Mag⇤!cd|2

•  in the dilute limit           then  

and since          the HEF formula is recovered 

�(i)
ag!cd ! Fa/g/⇡|p1t|, |p2t|, |kt| � Qs
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uû + tt̂
�

sŝt̂û
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sŝ� tt̂

N2
c

uû
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Table 7: The hard factors accompanying the gluon TMDs �
(i)
ag!cd

.

for pure gluon channel, and

g4K
(1)
gg

⇤!qq

=
1

(2N
c

C
F

)2
N

c

C2
F

⇣

�

�M
gg

⇤!qq

(3, 1⇤, 4, 2)
�

�

2
+
�

�M
gg

⇤!qq

(3, 4, 1⇤, 2)
�

�

2
⌘

, (6.30)

g4K
(2)
gg

⇤!qq

=
1

(2N
c

C
F

)2
�C

F

2

⇣

M
gg

⇤!qq

(3, 1⇤, 4, 2)M⇤
gg

⇤!qq

(3, 4, 1⇤, 2) + c.c.
⌘

, (6.31)

for gg⇤ ! qq channel. For the qg⇤ ! qg sub-process we need to use the crossing symmetry as
described in the preceding section. We have

g4K
(1)
qg

⇤!qg

=
1

2C
F

N2
c

n

N
c

C2
F

⇣

� �

�M
gg

⇤!qq

(3, 1⇤, 4, 2)
�

�

2
⌘

2$4

�C
F

2

⇣

�M
gg

⇤!qq

(3, 1⇤, 4, 2)M⇤
gg

⇤!qq

(3, 4, 1⇤, 2) � c.c.
⌘

2$4

o

, (6.32)

g4K
(2)
qg

⇤!qg

=
1

2C
F

N2
c

N
c

C2
F

⇣

� �

�M
gg

⇤!qq

(3, 4, 1⇤, 2)
�

�

2
⌘

2$4
. (6.33)

In all the formulas above, the first color factor comes from color averaging. The minus signs in
front of the amplitudes in (6.32), (6.33) come from the crossing of a fermion line. Table 7 is
easily recovered using the following relations of s̃

ij

to the kinematic variables from Section 5

s̃23 = s̃14 = ŝ, s̃34 = s̃12 = t̂, s̃24 = s̃13 = û , (6.34)

s̃1⇤4 = s̄, s̃1⇤2 = t̄, s̃1⇤3 = ū . (6.35)

7 Conclusions and outlook

Dijet production is one of the key processes studied at the LHC. Requiring the two jets to be
produced in the forward direction creates an asymmetric situation, in which one of the incoming
hadrons is probed at large x, while the other is probed at a very small momentum fraction. This
kinematic regime poses various challenges, one of the biggest questions being the existence of
a theoretically-consistent and, at the same time, practically-manageable factorization formula.
The standard collinear factorization is not applicable in this case as the dependence on the
transverse momentum of the low-x gluon in the target, k

t

, cannot be neglected.
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The six 2-to-2 off-shell hard factors 
•  they can be computed in two independent ways: 

using Feynman diagrams, and using color-ordered amplitudes  

s̄, t̄, ū = ŝ, t̂, û(kt = 0)ŝ, t̂, û are the Mandelstam variables and 



Conclusions I 
 

•  at leading order, for inclusive enough processes (like SIDIS) where 
factorization is “simple”: 
 
TMD factorization (valid at large Q2) and kT factorization (valid at small x) 
 
are consistent with each other in the overlapping domain of validity 

 
•  at leading order, for processes where factorization is more involved 

(like forward di-jets): 
 
TMD factorization (with several sub-process-dependent TMDs) and 
saturation calculations (which no more consist of kT-factorized expressions) 
 
are consistent with each other in the overlapping domain of validity 

 
•  the breaking of kT factorization at small-x is expected, understood, 

and is not a problem in saturation calculations: 
 
a more involved factorization is used, with more a appropriate description 
of the parton content of the proton (in terms of classical fields) 



Conclusions II 
 

•  some features of saturation calculations can be imported into the 
TMD framework in order to improve it 

•  for instance, in the case of forward di-jet production: 
 
several gluon TMDs (as opposed to a single one) are crucial in the TMD 

     factorization regime        which corresponds to nearly 
     back-to-back jets, but the off-shellness of the small-x gluon is missing 
 

 this off-shellness is crucial to recover the HEF regime 
    and can be restored 

 
•  also, the different TMDs can be related to each other at small-x 

 
one can use information extracted from one process to predict another 

 
•  the next step now is to connect the x evolution of u-pdfs and the 

scale evolution of TMD-pdfs 

|p1t|, |p2t| � |kt|, Qs

|p1t|, |p2t|, |kt| � Qs

Ian Balitsky’s talk tomorrow 


