Supported by NCN with Sonata BIS grant

High Energy Factorization selected phenomenology results

Krzysztof Kutak

Based on results recently obtained in collaboration with:

M. Bury, P. Kotko, C. Marquet, E. Petreska, S. Sapeta, T.Salwa, M. Serino, A. van Hameren

High Energy Factorization

Helicity method based method for any process KK, Kotko, van Hameren '13

Off-shell matrix elements

Off-shell matrix elements

Kotko, KK, van Hameren 2013, KK, Salwa, van Hameren 2013

Hybrid high energy factorization

ME + *parton densities in kt factorization*

Helicity based methods for ME Kotko, K.K. van Hameren, '12

Theory

Gribov, Levin, Ryskin '81 Ciafaloni, Catani, Hautman '93 Collins, Ellis '93

Phenomenology Baranov, Hautmann, Jung, Maciuła, Marquet, Motyka, KK, Kotko, Lipatov, van Hameren, Saleev, Szczurek, Zotov,...

Hybrid formula for cross section

$$\frac{d\sigma}{dy_1 dy_2 dp_{1t} dp_{2t} d\Delta\phi} = \sum_{a,c,d} \frac{p_{t1} p_{t2}}{8\pi^2 (x_1 x_2 S)^2} \left| \overline{\mathcal{M}_{ag\to cd}} \right|^2 x_1 f_{a/A}(x_1,\mu^2) \,\mathcal{F}_{g/B}(x_2,k^2,\mu^2) \frac{1}{1+\delta_{cd}}$$

Deak, Jung, KK, Hautmann '09

6

Example of matrix element for hybrid factorization

Two on-shell partons $2 \rightarrow 2 ME$

One off-shell parton $2 \rightarrow 2 ME$

Bad approximation by collinear physics of region where angle between produced jets is small

Numerical tools for HEF

AVHLIB

http://bitbucket.org/hameren/avhlib (A. van Hameren)

complete Monte Carlo program for tree-level calculations
 any process within the Standard Model
 any initial-state partons on-shell or off-shell
 employs numerical Dyson-Schwinger recursion to calculate helicity amplitudes
 automatic phase space optimization

AMP4HEF

http://bitbucket.org/hameren/amp4hef (A.van Hameren, M.Bury, K.Bilko, H.Milczarek)

•only provides tree-level matrix elements (or color-ordered helicity amplitudes) •employs BCFW recursion to calculate color-ordered helicity amplitudes •available processes (plus those with fewer on-shell gluons):

$\emptyset \to gg + 4g$	$\emptyset ightarrow ar{q} q + 3g$	$\emptyset \rightarrow \bar{\mathfrak{a}}^* \mathfrak{a} + 3\mathfrak{a}$	Fasy to use in
$\emptyset ightarrow g^* g + 4g$	$\emptyset \rightarrow a^* + \bar{a} a + 2a$	$\emptyset ; q q ; 9$	Fortran and C
$\emptyset \to g^*g^* + 4g$	9 9 9 9 9 9 7 9	$\emptyset \rightarrow q q^{*} + 3g$	

LxJet

http://annapurna.ifj.edu.pl/~pkotko/LxJet.html

(P. Kotko)

hybrid high energy factorization suitable for forward jets,
implemented helicity tree-level amplitudes for all channels for dijets and three jets
recursive relation for color ordered tree-level amplitudes with single off-shell leg for arbitrary number of gluons
currently the native phase space generator is up to three final state partons

Evolution

BFKL reummation of logs 1/x. Dependence on x and k_t

$$\mathcal{F} = \mathcal{F}_0 + K \otimes \mathcal{F}$$

Balitsky-Kovchegov reummation of logs 1/x + rescatterings. Dependence on x, k_t and shape of the target

$$\mathcal{F} = \mathcal{F}_0 + K \otimes \mathcal{F} - \frac{1}{R^2} V \otimes \mathcal{F}^2$$

BK formulated for large nucleus often used as a model for proton

Numerical solutions and phenomenological applications: Lublinsky, Levin, Maor; Golec-Biernat, Motyka, Stasto; KK, Kwiecinski; Marquet, Soyez' Albacete, Armesto, Milhano, Salgado,.....

 Q^2

 p_P

Glue in p vs. glue in Pb

Maximum → emergence of saturation scale

Introducing hard scale dependence

Introducing hard scale dependence

Central-forward di-jets

Di-jets pt spectra

S.Sapeta. KK ,12

During evolution time incoming gluon becomes off-shell

Crucial effect of higher order corrections

p₁

p2

рз

kt

Decorelations inclusive scenario forward-central

van Hameren,, Kotko, K.K, Sapeta '14

Forward-forward di-jets

Results for decorelations p+p

Results for decorelations p+p

KK '14

by jet algorithm Sudakov suppression $\mathrm{d}\sigma$ 2 pb] dφ -2 Sudakov 10^{7} 2000 enhancement 1500 1000 10^{6} 500 10^{5} 0 -1 10^{4} $\Delta \phi$ 0 0.5 1.5 2.5 3 2 1 18

Divergence regularized

Forward-forward dijets

1.4

 $R_{pA} = p+Pb/p+p$

A. van Hameren, Kotko,KK,Marguet, Sapeta '14

KS c=1

√S = 5.02 TeV KS c=0.5 1.3 pt1>pt2>20 GeV 3.2<y1,y2<4.9 1.2 rcBK d=2 1.1 1 \mathbb{R}_{pA} 0.9 0.8 0.7 0.6 0.5 0.4 20 25 30 35 40 p_{t2} [GeV]

rcBK: above unity at large pt KS: reaches unity at large pt

Studies of sub-leading jet gives more pronounced signal of nonlinear effects.

Z + jet

Decorelations in Z0 + jet

 $g^*q
ightarrow q\mu^+\mu^-, \, g^*\overline{q}
ightarrow \overline{q}\mu^+\mu^-$

Z0 pt spectrum

1/a da/dp_{TZ} [1/GeV]

Colorless final state. No color rescatterings. Description OK

Message: calculation with hard scale dependent gluon closer to data

Jet pt spectrum

Good tendency but probably effects of final state interactions not taken into account.

Message: possibly larger rescatterings as compared to color neutral Z0 ²³ therefore data is not described

Single inclusive forward jet

Single inclusive *p*^t jet spectra

Decloue, Szymanowski, Wallon '15

$$\frac{d\sigma}{dy_1 dp_{1t}} = \frac{1}{2} \frac{\pi p_{1,t}}{(x_1 x_2 S)^2} \sum_{a,b,c} \overline{\left|\mathcal{M}_{ab\to c}\right|^2} x_1 f_{a/A}(x_1,\mu^2) \,\mathcal{F}_{b/B}(x_2,p_{1t}^2,\mu^2)$$

$$Dumitru, Hayashigski, Jalilian-Marian '05$$

Single inclusive *p*^t jet spectra

Preliminary KK, Bury, Sapeta

|3.2| < y < |4.7|

HEF and central jets

pt spectra of leading jets

preliminary KK, M.Serino, A. van Hameren

•on both sides unintegrated pdfs.

- •all channels take into account i.e. off-shell quarks and off-shell gluons
- •gluon density obtained using the KMR prescription.
- •the underlying collinear pdf is at NLO accuray

HEF and central jets

preliminary KK, Serino, van Hameren

•on both sides unintegrated pdfs.

pt spectra of leading jets

pp -> 4 jets + X, Leading jet, α_S from MSTW2008lo68cl

•all channels take into account i.e. off-shell quarks and off-shell gluons

•gluon density obtained using the KMR prescription.

•the underlying collinear pdf is at NLO accuray

HEF and central jets

pt spectra of second jet

•on both sides unintegrated pdfs.

•all channels take into account i.e. off-shell quarks and off-shell gluons

•gluon density obtained using the KMR prescription.

•the underlying collinear pdf is at NLO accuray

BACK UP

Example of matrix element for hybrid factorization

Polarization of off-shell gluon

for onshell gluons

ı.

$$\sum_{\mu+1} \epsilon^{\lambda}_{\mu} \epsilon^{\lambda*}_{\nu} = g_{\mu\nu} - \frac{p_{A\mu}q_{\nu} + q_{\mu}p_{A\nu}}{q^{\rho}p_{A\rho}}$$

Effective action based approach Lipatov 95, Lipatov, Vyazovsky 2000

Gauge link based derivation Kotko'14