Study of TMD evolution in SIDIS at moderate O
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Comments

O e— M

4+ Collins-Soper evol. kernel has perturbative-short distance & non-perturbative
(NP) large-distance content

4+ Non-pertb. large-distance is strongly universal -many interesting predictions

+ Universal character can exploited in observables “Bessel Weighting” another

time and place
(Boer Gamberg, Musch Prokudin JHEP 2011, Aghasyan, Avakian, Gamberg, Prokudin, Rossi et al 2014)

+ Global fits, based on larger Q Drell-Yan—data/processes find substantial

contributions from nonperturbative regions in the Collins-Soper evolution
kernel-e.g. BNLY PRD 67(2003) & Konychev Nadolsky PLB 2005

+ Recent demonstrations that applying larger Q DY fits result in very rapid
evolution for SIDIS data which are “HERMES/COMPASS/JLAB like”

+ We investigate SIDIS measurements in the region of a few GeV, where
sensitivity to NP transverse momentum dependence 1s more important or even
dominate the evolution

+ Performed a study that isolates/places bounds on it/we quantify it s.t. both
high-energy DY fits as well respects the lower energy experiments



Outline

+ Review of elements TMD factorization in QCD... in
particular strong universal factor from NP content of CSS
evolution kernel

4+ Study of evolution transverse momentum broadening SIDIS
and role of universal role of NP content of evolution kernel

4+ Prediction of strong universality of TMD factorization

4+ Implications for TMDs & Nucleon Structure
4+ Role of Y- Term matching of low and high gr behavior of

cross section @ moderate Q--new work to appear

4+ Some conclusions ... work



TMD factorized cross section

dpz x ZHJJ sio1s u/Q)/deTe“’T'PTFH1 (@, b s 1) Dty (2, b 15 15

exp { L gPDF(x7 bT7 bmax) — gFF(Z, bT, bmax) - QQK(bT, bmax) In <%)

+21H<Q)z;—<b*;ub>+ /:d;f'[ww(asm');l)+7FF<as<u’> 1) — 2ln(§>w( (u’))”

Hb
+ Ysipis - + PS.C

Collins 2011 (Cambridge Univ. Press)



Elements of TMD Fact. Cross section

® H hard scattering part
® [ & D are TMD PDFs dominates when Pr~ kr <<Q

® Y term serves to correct expression for structure
function when Pt~ Q

® Exponent contains both perturbative and non-perturbative content arising
from TMD factorization < » evolution

® Where does this structure come from ... of course this is based upon earlier
CS 81 & CSS 85 formalism but new treatment of soft factor and CSS
equations effectively implements “resummation” of large logs.



¢ [ eading Regions-power counting Libby Sterman

PRD 1978 (see Collins PRD 1980 nongauge theories, Collins

Soperp NPB& CSS formalism 1982-85... Collins 2011 Cambridge
Univ. Press)

¢ “Reduced Diagrams”

e Apply Ward Identities get factorized form
e Soft Factor w/ gauge links
e TMDs w/ gauge links

e Hard contribution




TMD factorization

’ \ Collins Soper NPB 1981,1982, CSS NPB 1985, Collins, Hautman
’ \} PLB 00, Collins Metz PRL 2004, Collins Oxford Press 2011, Boer
P, ,' ' NPB 2001, 2009,2013, Ji, Ma, Yuan PLB 2004, PRD 2005, Ibildi, Ji,
Yuan PRD 2004, Cherednikov, Karanikas, Stefanis NPB 2010,
’ ' \ Collins QFT 2011, Abyat, Rogers PRD 2011, Abyat, Collins, Qiu,
Rogers PRD 2012, Collins Rogers 2013, Echevarria, 1dilbi,
I >

Scimemi JHEP 2012

ETC ...

Elements of Factorization

* TMDs w/Gauge links: color invariant
*|n addition Soft factor
*Hard factor



*TMD PDFs & Soft factor have rapidity/LC divergences
* Rapidity regulator introduced to regulate these divergences
* Treatment of LC/Rapidity divergences in TMD factorization

Collins Soper NPB 1981, Collins Hautmann 2000, Collins Metz PRL 2004,
Ji, Ma,Yuan PRD 2004, Collins 2011, Collins Rogers 2012



Further treatment achieve full factorization
using Soft Factor in CSS

* Lightlike Wilson lines in TMDs ~ W(w.xin) =Pexp[—igofo dsn-AS(x+sn)r“]-
— Infinite rapidity QCD radiation in the wrong direction. N
— In soft factor/fragmentation function too. 1 (n )

yB:§ln
n =0-—

— 00 YB_x. X
ﬁ ‘ limyp — —o0

* Finite rapidity Wilson lines

— Regulate rapidity of extra gluons.

n

n~ = (—e*¥5,1,0)



Introduces rapidity scale parameter

Paths of Wilson Lines in Coordinate Space

Standard Integrated
Regulate
YB
n = (_62y37 170) /\
Tilt to requlate wo,W
rapidity divergences

TMD tilted

(p = Mpa?e?Wr—vs) &> Ys



Emergence of Soft Factor in Cross section

Frnsub (g (—00)) x FEoSUb (oo — g) Collins Act Pol. 2003

do = |H|? =L ~ :
’ | S(—i—OO, —OO) J1 Ma Yuan 2004, 2005

TMDs are still “entangled” not yet fully factorized

LC/rapidity divergences regulated

Use soft factor properties to fully factorize and
perform evolution

Collins 201 1 Cam. Univ. Press see also Aybat Rogers PRD 201 |



Emergence of Soft Factor in TMDs

do = ‘7'”2 FlurlSUb(f‘/l — (too)) X F;HSUb(‘|‘OO )
S(400, —0)

Soft factor further “repartitioned”
This is done to

|) cancel LC divergences in “unsubtracted” TMDs
2) separate “right & left” movers i.e. full factorization
3) remove double counting of momentum regions

do = ‘7_”2 {Fvlunsub(y1 . (OO))\/ _ S(+oo,~y3) )} < {F;nsub(_i_oo - y2)\/ _ S(?JS; —~OO) }

S(+OO, _OO)S(y87 —O0 S(—|—OO, _OO)S(_I_OO?yS)

Separately
Well-defined



Each TMD is “factorized”

~

_ - S(br; ya, ys)
sub unsub ’ ? IS
(@, brip,ys) = lim - Fp™"(z, br; p, yp — yB)\/ A 3
Y4 —roo S(r;ya,yB)S(br;Ys, YB)

Yyp—>—00

Origin of Square Root -

\ Y 4 4000 From Ted Rogers
— 00 € { >

N.B. here ¥ is regulator



do 2 ~ ~
o7 X ZHjj’,SIDIS(&s(N)aN/Q)/deTQZbT Pr F (2,075 1, C1) Day /(2,015 11,G2)  + Ysipis
T 5!

(1 = MEz2e2vr—vs) &= Ys

In full QCD, the auxiliary parameters are exactly
arbitrary and this is reflected in the the Collins-Soper
(CS) equations for the TMD PDF and the

renormalization group (RG) equations

Collins arXiv: 1212.5974



Evolution follows from their independence of rapidity scale

) S(briya, yn)
Fi® (@, brs pyn) = lim - FR (2, by p, yp — s YT
B (@, b1, yn) = ya—oo H (@, brs p yp yB)\/S<bT§yAayB)S(bTSyn:yB)

Yyp——00

From operator definition get
Collins-Soper Equation:

- Oln F(x,bp, p, ) = K(b }
TR T; #




Along with .... Renormalization group Equations

. N
d‘ii& = —vk (9(1)) RGE:
e -  get anomalous
d1 Fill,rlbz,u, ) () ¢ i) for F & K
-

Solve Collins Soper & RGE egs. to obtain “evolved TMDs”



Evolved TMDs

® Small b7 -Perturbative

® Large bHr -non-perturbative



Small b7

Expansion for small b7 can be made in terms of the integrated PDFs - OPE
After Fourier transformation, this gives both the large- kr behavior, and the
normalization of the integral over the whole k7 region.

- dz -
Fia(a,bri i Gr) =3 |5 Gt/ b e gy )

+ O((Agcepbr)?).



Large br

dp2 ZH” s (@ (1), 1/ Q) / d*bre® Py (b 1, 1) Dy (2, brs 1, G2)

+ Ysipis + P.S.C O(A/Q)"

Practical 1ssue: 1s that the "TMD contribution” term 1s
calculated 1n coordinate space and Fourier transformed
back into momentum space

Calculations of F7T term include non-perturbative
behavior at large br

In the Fourier transforms that connect these calculations to
Cross sections, non-perturbative effects from large br can
migrate to unexpectedly large Pr, and perturbative effects
from small b7 can migrate to small Pr.

Must match these regions



Solve Collins Soper & RGE eqgs. obtain Evolution kernal

Collins Soper Sterman NPB 85

® Prescription for matching large and small 57

® Replace br in hard part with

Lo b G
% , Mb b
\/1 + b%/bk . *

® Maximizes the perturbative content while providing a TMD
formalism that is applicable over the entire range of Pr



Nonperturbative part of K (b, u)

Ik (b3 bimax )= _i{(bTa//t) + k(b*,ﬂ) Collins Soper Sterman NPB 85

Totally universal related to derivative of soft factor
independent of x & hadron. Contains essential
content on evolution of nucleon structure



~

Non-perturbative part of K (br, u)

Ik (D13 bimax) = —k<bT,ﬂ) + k(b*,ﬂ) Collins Soper Sterman NPB 85

Solve RGE:
K(br; ,U«) = K(b.; Mb) — —,‘)’K(g(,“ ) — gx(br)
Mp
b C
b x ! ) Up — b_l
V1 + 03/bh :

bmax chosen so that b. doesn’t go too far beyond
the pertb. region maximize perturbative content in
evolving TMDs and cross section



Non-perturbative part of TMD

(Qj bT NaCF)
F (le,b*,,u,CF)

F (CB br; M,CF) (37 b*aﬂaCF)

~ podp! ( / ’Y_O> K(bp,u)1n Sal
FH(%bT;Mo,Co)@f“O e\ ) "0

FH(xab*aluaCF)

podu! K(by,pu)In ) SE
Fi (2, b o, Go)elio w000 k) T \/?

)FH($ , b3 1o, C()) — 9k ( b*)ln\/g
Fr(, b*,No,Co)

. —01(x.b7:bmax bi)In | SE
FH(QU,Z?*,/L,CF)Q nwbr (b ln 0

|
’1jz

(:E b*a M, CF



Evolved Structure Function & TMDs

FUU(xa <y b7 Q2) — Zﬁgfl(xa bT7 H, CF)E%Q(Zhv bTa H, CD)HUU(Q27 ,LL2)

Totally universal related to
derivative of soft factor
independent of x & hadron

'Non-perturbative large br
behavior

+1In (Q) K(b*§,ub)—|—/ a ); '
,Ub py M

” SRR LTI T . Acaid T - T R e Btiahac Saiie SRR AT DA AR g R e = RS MR Sl At
2 e i Y R i T R g e T L R e B R L e B S o o R e - T B R P o s
5 5 = 2 NN BN S & 2 . 3 o g % <- _ 2 =

Perform OPE on perturbative small br behavior

These functions have good perturbative behavior at
entire range of br



Comments Factorization

® This strong form of universality 1s, therefore, an
important basic test of the TMD factorization
theorem. It 1s related to the soft factors —the vacuum
expectation values of Wilson loops —that are needed
1n the TMD definitions for consistent factorization
with a minimal number of arbitrary cutoffs

® Constraining the non-perturbative component of the
evolution probes fundamental aspects of soft QCD



Studies that impact TMD Factorization
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Comments on Stage 2 Fitting

It was recently illustrated that the rapid evolution given by extrapolating the non-
perturbative extractions from Drell-Yan cross sections at large Q 1is too fast to
adequately account for data in the region of Q of order a few GeV.

The current phenomenological situation 1s further complicated by the observation that
parametrizations obtained by extrapolating large Q fits to small Q implies

suspiciously rapid evolution in the region of a few GeV, a result very clearly
demonstrated in the recent work of Sun Yuan PRD 2013, Boer NPB 2015....

More recently, Aidala,Field, LG ,Rogers PRD 14 examed the HERMES and
COMPASS data. We agree that there 1s indeed a discrepancy between these data and
the predictions based on the earlier Drell-Yan data but argue that the low- and high-
energy data are mostly probing different regions of transverse position; thus, the
discrepancy concerns the extrapolation of a parametrization of non-perturbative
physics outside the region where 1t was fitted.



® Frequently used ansatz for DY

1

gK(bT; bmax) — gZ(bmaX) Eb%’



Rapid TMD Evolution ?2?

In the momentum-space TMD PDF, the evolution corresponds to rapid
suppression at small k7 , of order kr~ 1 GeV, with increasing Q.

The effect can be observed in the small krregion of the curves

PHYSICAL REVIEW D 83, 114042 (2011)
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1! See also Elke’s talk at REF 2015
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Comments on Stage 2 Fitting

To maintain consistency with the general aim of extracting
properties intrinsic to specific hadrons we would 1deally vary Q
while holding x, z, and hadron species fixed.

In experiments, however, these variables are correlated, and practical
fitting becomes challenging.

We appeal to the multi-differential COMPASS data to study the
variation in the multiplicity distribution with small variations in Q
and roughly fixed x and z bins within the same experiment.
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Eur. Phys. J. C (2013) Adolph et al.

Bin | xj" Xhi (¥b;) Qi O (0%)
1 0.0045 0.0060 0.0052 1.0 1.25 1.11
2 0.0060 0.0080 0.0070 1.0 1.30 1.14
3 0.0060 0.0080 0.0070 1.3 1.70 1.48
4 0.0080 0.0120 0.0099 1.0 1.50 1.22
5 0.0080 0.0120 0.0099 1.5 2.10 1.76
6 0.0120 0.0180 0.0148 1.0 1.50 1.22
7 0.0120 0.0180 0.0148 1.5 2.50 1.92
8 0.0120 0.0180 0.0150 2.5 3.50 2.90
9 0.0180 0.0250 0.0213 1.0 1.50 1.23
10 0.0180 0.0250 0.0213 1.5 2.50 1.92
11 0.0180 0.0250 0.0213 2.5 3.50 2.94
12 0.0180 0.0250 0.0216 3.5 5.00 4.07
13 0.0250 0.0350 ( 0.0295Y) | 1.0 1.20 1.10
14 0.0250 0.0400 0.0316 1.2 1.50 1.34
15 0.0250 0.0400 0.0318 1.5 2.50 1.92
16 0.0250 0.0400 0.0319 2.5 3.50 2.95
17 0.0250 0.0400 0.0323 3.5 6.00 4.47
18 0.0400 0.0500 0.0447 1.5 2.50 1.93
19 0.0400 0.0700 0.0533 2.5 3.50 2.95
20 0.0400 0.0700 0.0536 3.5 6.00 4.57
21 0.0400 0.0700 0.0550 6.0 10.0 7.36
22 0.0700 0.1200 0.0921 3.5 6.00 4.62
23 0.0700 0.1200 0.0932 6.0 10.0 7.57
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Quantifying the Evolution

COMPASS data for hadron multiplicities are fitted using a Gaussian form
We then quantified/bounded the Pr broadening

OTMD term = H(a,(0))Fy (x.br: 0. 0*)Dy. (. by: Q. 07)

) N b7(P7)
OTMD term ~ €XP § — 4 gPDF(xa br; bmax) X QFF(Z, br; bmax) X b%

d In 61vD term

d In O

- K(bT; /’lO) |deep
brdep

do b3 Q
— « F.T. — L (p2 A4 T (122
dp% X CXp { 4 (< T>O . evol 11 <Q1)> }

A<P%~>(Q1, QZ) ~ 4Cevol In (%)

1




Looking for maximum range on Q to perform study
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0.3
: /4,’//
0.28 |- -
0.26 | —= = Frtat T
‘35 0.24 — g
S
S
e 02 AP} (01, 02) ¥ 4Cq In (52
P X = 0.0295-0.0323 T 1, 2) evol 0,
V .
0.2 ®h" 020<z<0.25
m  0.25<2z<0.30
A 030<2z<0.35
018" Oh 0.20<z<0.25
Ci—/*/ O 0.25<z2<0.30
0.16 — A 0.30<z<0.35
_lllllllll|llll|llllllllllllllllllllllllllllllllll
0 01 02 03 04 05 06 0.7 08 0.9 1

In(Q,/Q)



Quantify Broadening but in h-space

12 16 ro by (fm)
| ' | ' | '
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From the general features of Fig.we conclude that, for the differential cross section in the limit
of small Pr, the relevant range of bt nearly dominated by the non-perturbative region of bt for

QO ~1.0GeV tobr~ 2.0 GeV. This is the scale of nucleon structure



Comments

The only aspect of TMD factorization that we have used to parametrize broadening 1s CS equation
& observation that one can fit COMPASS multiplicities w/ Gaussians parameterization

Specifically, we have applied it to the case of the COMPASS data for the small range of Q where
the Pt distribution appears to remain approximately Gaussian even after evolution to obtain

do b3 0
— «F.T. — L (P2)y +4Ce In [ =2
dP%w X cXp { 4 (< T>O -+ evol 111 <Q1>) }

Now we will address the question of whether evolution is governed primarily by perturbative or
nonperturbative bt dependence.



source of error

The cutoff at Pr = 0.85 GeV 1n the fits of COMPASS Data where the Gaussian
description starts to break down.

One could speculate that including more of the large Pr tail might result in an
enhanced relative contribution from small br .

To address this, we have performed our own fit of the Gaussian form using the
same data from COMPASS DATA that gave the two curves for Q = 1.049 GeV
and Q = 2.114 GeV Fig. but now for the entire range of Pr (up to Pr~ 1.0 GeV).



Refit-momentum space

Gaussian Fit Gaussian Fit
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Refit b space

<Q,’>=1.10 GeV’ COMPASS ||
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Little change when we .
include “large” Pt data
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The solid red and blue curves are the same as those in previous Fig. in where fit 1s
restricted to region of Pt <0.85 GeV.

Purple dashed and green dot-dashed curves are from the refit Gaussian curves above that
use all Pt and correspond to Eq. (32) with the initial and final Pt from Eq. (34)

(P2)New Fits v = 01717 +£0.0011 GeV?;  (P2)New Fits . = 0.2477 + 0.0008 GeV
2\ Old Fi 2\ Old Fits 2
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Also ....

A critique could be made regarding the use of a Gaussian form on the grounds that
analyticity considerations 1mply a power law fall-off for the large PT behavior of
TMD correlation functions.

Moreover, a power law behavior 1/P7? (up to logarithmic corrections and the
effects of evolution of collinear PDFs) 1s a prediction of pQCD .

The true large Pr behavior of the TMD functions is not directly meaningful at very
large Pr , since TMD factorization (without the Y term) is inapplicable once the Pr
1s comparable with Q. Clearly, the Y -term will be need be incorporated in the
future to deal with these 1ssues.



Multiplicity
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do 1
2 X P2 v
dPT (1 | Mip)

The black dashed curve shows the bt space function for Q, = 2.114GeV. This corresponds to the fit
obtained 1n transverse momentum space using the Kaplan function in momentum space
The fits themselves yield parameters M* = 1.3006 GeV2 and v = 6.7216.

For comparison, we have again included the solid red and blue curves corresponding to the original
fits obtained by the COMPASS collaboration at <Q;> = 1.049 GeV and <(Q) = 2.114 GeV, respectively



Next, we examine the evolved formula to estimate how well it matches the change
in widths of the Gaussian fits observed in under different assumptions for gg

bré(br, ...) =
o exp] ~gron (5.1 ) (b ) = 2001 0 ( 2)
#20 (2)&Gm)+ [ a0 + (i) =210 (§)ratai0)| |

We will require that for Q = Qo=1.049 GeV, AND
bro(br,...) reducestothe Q=1.049 GeV COMPASS Gaussian fit



Input to evolution kernel

The anomalous dimensions to order a,(u) are the same for the TMD PDF and the TMD fragmentation function:

seom(an (). e /) =4Ce (5 ~1n (220 ) (B 1 O(a(w?), (A1
e (), G /) =1k (5 ~1n (S5 ) ) (“420) + O (w?) (A2
The MS anomalous dimension of the CS kernel to one loop is
el () = 505 (240) 4 O(a(w?). (A3
_ o b2 2
R =0, 2,

+ O(a,(u)?).

~

K (by; up) vanishes exactly when a choice of Cy = 2¢77® is made.



First Turn off gr ~ 92(bmax) = 0
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evolv
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92(bmaX) 5 evolv

very weak evolution Vs.



0.5

0.25H

——— <Q,>=1.1GeV’ COMPASS

— <Q22>=4.47 GeV2 Gaussian Fit

— — — <Q,>=447 GeV’ Kaplan Fit
2 2

c = e <Q,>=447 GeV’ g,=0.1

— « — <Q,>=447 GeV’ g,=0.7

b =05GeV’

m

Extremely Rapid




COMMENTS

® Thus, if we demand the Gaussian ansatz in for the form of gx (br ; bmax ) for all

bt , then we estimate that the true value of g» , at least for the kinematics of our
fit must lie roughly in the range of 0 < g2 < 0.03 GeV?2.

® Because of the strong universality of gx (bt ; bmax ), these results seem on the

surface to indicate a discrepancy between the low Q data and detailed and
successful fits of the past that focus on larger Q, which tend to find
g>>0.1 GeV?



Setup 9K to respect DY fits

brnax )X b7
K(bT;bmaX) — 92( 9 ) NP In (1 L )

bT << bNP
1 2 1 4
K(bT§ bmax) ~ QQ(bmaX)_bT — g2(bmax) 9 bT + ...
2 b2

bmax =S5 G€V, [05) =1"Y! G€V2 and bNP —2.0 GeV—l

P. M. Nadolsky, D. Stump, and C. Yuan, Phys. Rev. D 61,
014003 (1999).
P. M. Nadolsky, D. Stump, and C. Yuan, Phys. Rev. D 64,
114011 (2001).



bmax — 05 GCV, g» :Ol G€V2 and bNP :2() GeV—l

b
N(;) GXP{_QPDF(X, br; bmax) - gFF<Z’ br; bmax) \
0\ - Q dy
+ 2 In (—) K(b.;up) —|—/ — yepr(ag(4'); 1)
Hp w, H
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See, for example, Fig. of Konychev and Nadolsky and compare this with Fig. 3, where contributions from bT < 2.0 GeV—! dominate.
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® This strong form of universality 1s, an important basic test of the TMD
factorization theorem. It 1s related to the soft factors—the vacuum expectation
values of Wilson loops—that are needed in the TMD definitions for consistent
factorization with a minimal number of arbitrary cutoffs.

® Constraining the nonperturbative component of the evolution probes
fundamental aspects of soft QCD.

® (CSS/ICC TMD-factorization formalism is tailored to the treatment of the
individual, well-defined operator definitions for the TMDs, and it maps directly
onto the partonic picture displayed in the TMD factorization



Conclusions

Even with the small variations in Q discussed in this paper, however, one is
able to constrain general properties of g g (bT; bmax)

That the data are atrelatively low Q helps especially to constram the form ofthe
nonperturbative evolution function &Ta maX

We find much greater sensitivity to the details of NP large br structure rather
than evidence that nonperturbative contributions to evolution are unnecessary

By accounting for nonperturbative behavior from at large bt we find it 1s not
difficult to reconcile past large Q fits e.g. from DY and SIDIS data



What about Y-term matching
M <<pr<<Q 777

® Problems seen s et. al, arXiv 1406.3073, Boglione et al JHEP 2015

do = WTMD(PT7 Q) -+ Y(PT, Q) + O (%) do

work in progress ...



Extras



* CS has simple S/T interpretation--multipole

expansion in terms of br[GeV~']conjugate to P
do
dz,, dy ds dzy, dy, [P |d[P.|

&2 2 dlb
Y )<1+L)/ 'T'|bT|{Jo<|bT||Phl|>fUUT+5Jo<|bT||PM|>fUUL

r,yQ? (1 —¢ 27, (27) remcsermmmmrms. dffmermamsremmsee| | | N} Olarized
+  V2e(1+e) cos gy Ji(|br||PhL]) i7" + e cos(2¢n) To(|br||PL|) F 008(2¢h) »

Boer, Gamberg ,Musch,Prokudin JHEP 2011

+ Ao V/2e(1 — &) sin gy Ji(|Jbr||[Pur]) Fin®

-+ SH \/28 1—|—8) Sln¢h ‘]1(|bTHPhJ_|) (3]12¢h +€Sln(2¢h) JQ(‘bTHPhJ_D stqSh}
+S)Ae | V1= 2 Jollbrl|Prsl) Frr + v/2e(1 — <) cos éy J1(|bT||pM|)fzoLs¢h}
+ 15| [Sin(¢h—¢s) J1(|br||Ph|) ;?h ¢s)+flsjl;(ih ¢s))

+ e sin(¢p, + bs) J1(|bT||Phl|)Fsm(¢h+¢S) o

+ & sin(3¢n — ¢g) Ja(|bp||Phi|) Fomon—os)

+ V2e(1 +¢) sinés Jo(|br||[Ph|) Fom?s
n \/28 +¢) sin(2¢y — ¢5) Jo(|br||Pro|) F Sm (20— ¢S)}

IS LA [V =22 cos(gn — ) Ta([brl [ Pas]) Fip @)
+ /2e(1 —¢) cos ¢ Jo(|br||[Ph|) Fios®s

£ T =) cos(26n — bs) Ja([br||Pas ) FEEE™ M} )




Factorization and Lightcone
Divergences

* Divergent contribution at I* = 0.

* Cancelation in the integral over all I..

« What if we don’t integrate?



Evolved TMD formalism for entire range of Pr

do

A o H(0(Q) [ g™ Fig (2,1 Q. @) iy (. brs Q.08 + Yo
T

do
0 o FUT.exp { —gopr (@ b3 bunas) — 965 (2 513 ba) — 20 (b3 b In 2 ) +
dP2 Qo
. Q
+ 21n (g) K(b*, ,LLb) —+ / i/ [’prF(ozS(,u’); 1) + ”YFF(OKS(H/); 1) —21In (Q,) VK(O‘S(M/))] }
o py M L
+ Ysipis

Gooe (X, D73 brnax) = g1(X, by bnax) — In(Fy (X, by fap, 12))



