Measurement of the top quark mass in final states with three jets and one charged lepton at $\sqrt{s} = 8 \text{ TeV}$ with the ATLAS experiment

G. Geßner, supervised by R. Klingenberg

Lehrstuhl für Experimentelle Physik 4 TU Dortmund

November 18, 2015

NEV TRISEROISS

Content

Motivation for the Analysis Analysis Event Selection Background Estimation Neural Network Template Method Ensemble Tests and Estimation of Systematic Uncertainties Optimization of the NN Cut Value Conclusion

Motivation for the Analysis

- first mass measurement in data enhanced with single top quarks with two jets in the final state in 2014 (ATLAS-CONF-2014-055)
- now: modified phase space with three jets in the final state
- orthogonal phase space compared to any other selection in a top quark mass measurement done before

Gregor Geßner (TU Dortmund)

Event Selection

- exactly **3 jets** with $p_T > 30 \text{ GeV}$: 1 *b*-tagged jet (MV1c50), 2 untagged jets (light jets)
- exactly 1 charged lepton with $p_T > 25 \,\mathrm{GeV}$
- missing transverse momentum with $E_{\tau}^{\rm miss} > 30 \, {\rm GeV}$
- triangular cut: $p_T(\ell) > 40 \text{ GeV} \cdot \left(1 \frac{\pi |\Delta \varphi(j_1, \ell)|}{\pi 1}\right)$ cuts to reject QCD-multijet events

transverse W-boson mass: $m_T(W) > 50 \text{ GeV}$

Gregor Geßner (TU Dortmund)

Background Estimation

- contribution of the QCD-multijet events is estimated by the use of two models:
 - electron channel: jet-lepton model; muon channel: anti-muon model
- data-driven determination of normalization for the QCD-models
- likelihood fit to the distribution of the missing transverse momentum

Control Plots

⇒ good agreement between Monte Carlo simulation and data in signal and control regions (not shown)

Gregor Geßner (TU Dortmund)

Neural Network

- use of a multivariate method as in the analysis with 2 jets (ATLAS-CONF-2014-055)
- training of all top processes (*tt*, *t*-, *Wt*-, *s*-channel) versus *W*+jets, *Z*+jets and diboson processes
- eleven input variables, adopted from the *t*-channel cross section measurement (ATLAS-CONF-2012-132)

Choice of Cut Value

- selection of events exceeding a minimal neural network output value
- cut value fulfills minimal requirements on statistical quantities:
 - signal purity p_S and efficiency ε_S, ratio of signal to background events β_{S/B} and background rejection ε_B

Choice of Cut Value

- selection of events exceeding a minimal neural network output value
- cut value fulfills minimal requirements on statistical quantities:
 - signal purity p_S and efficiency ε_S, ratio of signal to background events β_{S/B} and background rejection ε_B

Event Yields

decrease of total background fraction from 25 % to 14 %

ATLAS work in progress

	signal region (NN > 0.55)	combined channel
	process	total
	t-channel	4000 ± 400
expected signal	s-channel	246 ± 25
events	Wt-channel	$3460\pm~350$
	tī	49500 ± 5000
expected	W+jets	5800 ± 3500
background	Z+jets/diboson	1000 ± 100
events	QCD-multijets	2600 ± 1300
	total expected	66500 ± 6500
	data	67194
	bkgd. fraction rMC [%]	14.0 ± 5.0

Gregor Geßner (TU Dortmund)

Template Method for Top Quark Mass Measurement

Parametrization and Calibration Curves

signal and background distributions can be parametrized by the same function

- sum of Landau and Gaussian function
- parameters are linearly interpolated in dependence of the top quark mass
 - mass dependent calibration curves

final templates are given by the probability density functions $P_{\rm signal}(m(\ell b)|m_{\rm top})$ and $P_{\rm bkgd}(m(\ell b))$

Template Fit

Estimated templates are used as the input to a binned maximum likelihood fit to the data with:

$$\begin{split} \mathcal{L}(m_{\mathrm{top}}, N, f_{\mathrm{back}}) &= \prod_{\mathrm{bin}} \mathrm{Poisson}_{\lambda_{\mathrm{bin}}} \left(m(\ell b)_{\mathrm{bin}}^{\mathrm{data}} \right) \cdot \mathrm{G}\left(f_{\mathrm{back}}, r_{\mathrm{MC}}, \sigma_{r_{\mathrm{MC}}} \right) \\ \lambda_{\mathrm{bin}} &= N \cdot \left[(1 - f_{\mathrm{back}}) P_{\mathrm{signal}} \left(m(\ell b)_{\mathrm{bin}} | m_{\mathrm{top}} \right) + f_{\mathrm{back}} P_{\mathrm{bkgd}} \left(m(\ell b)_{\mathrm{bin}} \right) \right] \end{split}$$

Gregor Geßner (TU Dortmund)

Measurement of the top quark mass

Statistical Validation and Estimation of Systematic Uncertainties

- method is tested by generating sets of pseudodata
- each mass point is validated
- constructing pull distributions: pull = $\frac{\langle m_{top}^{fit} \rangle m_{top}^{fit}}{\sigma_{top}^{fit}}$
 - pull distribution: $\mu \stackrel{!}{=} 0$ and $\sigma \stackrel{!}{=} 1$

- various sources of systematic uncertainties influence the measurement
 - object energy scale/resolution and efficiencies
 - modeling uncertainties of signal processes
 - modeling uncertainties of background processes

dominant systematic sources:

- jet energy scale
- electron energy scale
- tt ISR/FSR
- tt

 MC generator
- QCD-multijet normalization

Influence of the NN Cut Value on the Total Uncertainty

- *m*(*lb*)-distribution depends on the cut value selected
- four cut scenarios are assumed
 - no cut, NN > 0.50, NN > 0.55, NN > 0.60
- for each scenario own templates are constructed
- statistical validations show no deviations

ATLAS	work i	n progress
-------	--------	------------

threshold value	stat. unc. ∆m _{top}	syst. unc. ∆m _{top}	tot. unc. ∆m _{top}
no cut	а	b	
NN > 0.50	+15 %	—15 %	
NN > 0.55	+27 %	-20 %	▼
NN > 0.60	+42 %	-25 %	•

- total uncertainty decreases with increasing cut value
 - more studies necessary to evaluate the optimal cut value

Summary and Conclusion

Summary

- selection of events in a phase space that has never been used in a top quark mass measurement before
- full analysis has been done
- studies on different cut values on the neural network output distribution have been performed

Conclusion

investigation of this phase space for a top quark mass measurement has good prospects

Result of the Analysis with 2 Jets in the Final State (ATLAS-CONF-2014-055)

Visualization of the Triangular Cut

cut is used to suppress QCD-multijet events

they mostly arise from dijet events that show a different kinematic signature compared to signal events

Gregor Geßner (TU Dortmund)

Measurement of the top quark mass

Control Regions

W-boson control region

- looser *b*-tagging efficiency
- signal region is excluded

2 b-tags control region

- second *b*-tagged jet is required
- no overlap to signal region

Control Plots in the W-Boson Control Regions

Control Plots in the 2 b-tags Control Regions

Gregor Geßner (TU Dortmund)

Measurement of the top quark mass

Parametrization of the Background Contribution to the $m(\ell b)$ -Distribution

the same effective parametrization as for the signal contribution:

$$f(p_1...p_6, x = m(\ell b)) = p_1 \cdot [p_2 \cdot L(x, p_3, p_4) + (1 - p_2) \cdot G(x, p_5, p_6)]$$

Gregor Geßner (TU Dortmund)

Measurement of the top quark mass