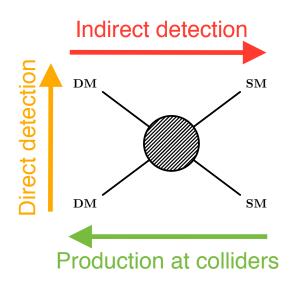
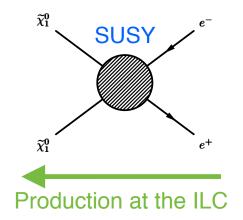
Dark matter relic density from observations of supersymmetry at the ILC

Suvi-Leena Lehtinen

DESY

18.11.2015





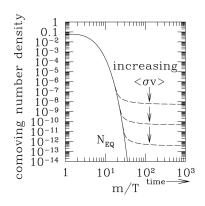
Dark matter experiments

Measurements at the ILC

Cosmological vs. collider precision

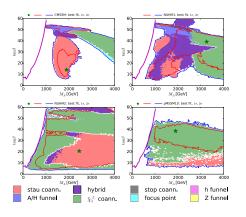
$$\Gamma$$
 $\Omega_{CDM}h^2 = 0.1197 \pm 0.0022$

$$\implies \Delta = 2\%$$



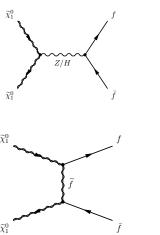
$$e^+e^-$$
 at 500 GeV (1 TeV) $P(e^-,e^+)=(\pm 80,\pm 30)$

How is DM relic density determined

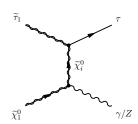

- relic density \propto present day abundance $Y(T_0)$
- $ightharpoonup rac{dY}{ds} \propto \langle \sigma v \rangle (Y^2 Y_{eq}(T)^2)$
- ➤ Full model ⇒ prediction for relic density
- micrOMEGAs a code to calculate relic density arXiv:1305.0237

Dark matter mechanisms in SUSY

> Stau coannihilation is one of the preferred mechanisms to explain dark matter in SUSY

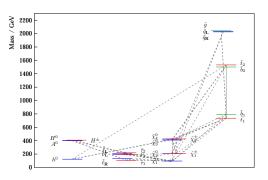


Mastercode arXiv:1508.01173v1



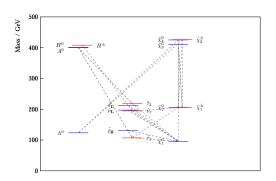
Processes in stau coannihilation

 Pair annihilation depends on LSP mixing and sfermion mass

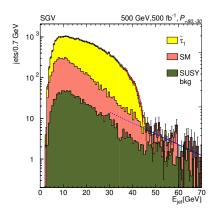

 Coannihilation depends strongly on the stau-LSP mass difference

Need to measure LSP and stau1 masses and mixings precisely

Stau coannihilation observable at the ILC


- pMSSM point with 12 parameters "STC8" (arXiv:1307.0782)
- $ightharpoonup m_{\widetilde{\chi}_1^0} = 96 \text{ GeV (bino)}, \ m_{\widetilde{\tau}_1} = 107 \text{ GeV } (\theta_{\widetilde{\tau}} = 71^\circ)$
- > True relic density value 0.113

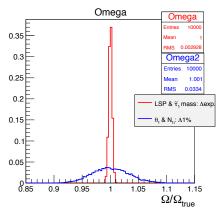
Stau coannihilation observable at the ILC


- pMSSM point with 12 parameters "STC8" (arXiv:1307.0782)
- $ightharpoonup m_{\widetilde{\chi}_1^0}=96$ GeV (bino), $m_{\widetilde{ au}_1}=107$ GeV $(heta_{\widetilde{ au}}=71^\circ)$
- > True relic density value 0.113

500GeV measurements

- Analysis of STC8 done by Berggren (arXiv:1508.04383v1)
- $ightharpoonup \widetilde{ au}_1 o \widetilde{\chi}_1^0 au$ endpoint $\implies \Delta m_{\widetilde{\tau}_1} = 0.15\%$

500GeV measurements

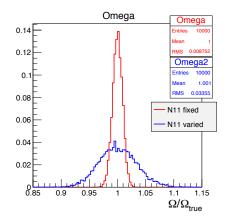

- ightharpoonup Can discover of all sleptons, sneutrinos, $\widetilde{\chi}_1^0,\widetilde{\chi}_2^0$ and $\widetilde{\chi}_1^\pm$
- Precisions on masses and mixings:

black=estimate, blue=analysis (arXiv:1508.04383v1)

$m_{\widetilde{\chi}_1^0}$	0.15%	$m_{\widetilde{\chi}^0_2}$	0.5%
$\overline{m_{\widetilde{ au}_1}}$	0.16%	$m_{\widetilde{ au}_2}$	2.5%
$\overline{m_{\widetilde{e}_R}}$	0.17%	$m_{\widetilde{\mu}_R}$	0.40%
$m_{\widetilde{e}_L}$	1%	$m_{\widetilde{\mu}_L}$	1%
$m_{\widetilde{ u}_e,\widetilde{ u}_\mu,\widetilde{ u}_ au}$	1%	$m_{\widetilde{\chi}_1^{\pm}}$	1%
θ_{τ}	1%	$A_{ au}$	20%
N _{11,12,13,14}	1% each	Umix, Vmix	20% each

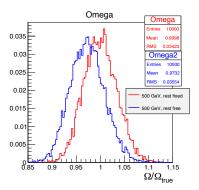
Stau1 and LSP mass vs mixings

- Red: LSP mass and stau1 mass varied 0.15%
- ➤ Blue: LSP mixings and stau1 mixing varied 1%
- With these assumptions, mixings dominate uncertainty on relic density Ω



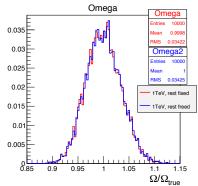
Important to measure: binoness of LSP

➤ Blue: LSP and stau1 mass 0.15%, LSP, stau1 mixings 1%


➤ Red: same but N11 (binoness) fixed

500GeV measurements

- \triangleright Red: all sleptons, sneutrinos, $\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_1^{\pm}$ varied, rest fixed. $\Delta\Omega = 3.5\%$ (fix N11 $\Longrightarrow \Delta\Omega = 2\%$)
- Blue: same but squarks uniformly varied 1 50 TeV, higgses 0.4 - 2 TeV and $\widetilde{\chi}_3^0$, $\widetilde{\chi}_4^0$, $\widetilde{\chi}_2^\pm$ 0.25 - 2 TeV
- Unobserved sector $\implies \sim 1\sigma$ shift of the mean, width similar



Assumptions for 1TeV measurements

- Assume no further improvement on light sparticle measurements (over-conservative)
- ightharpoonup Extended Higgs masses: $\Delta=1\%$
- $\succ \widetilde{\chi}_3^0, \widetilde{\chi}_4^0, \widetilde{\chi}_2^{\pm} : \Delta = 1\%$

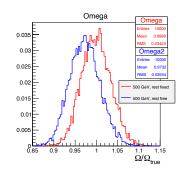
- > Red: unobservables fixed
- Blue: unobservables free
- No shift from unobservables, width same

Not considered

- ➤ MicrOMEGAs ⇒ tree-level SUSY cross-sections
- > SUSY loop corrections can give $\sim 10\%$ (e.g. arXiv:0710.1821v3)
- This probably just a shift of the mean predicted Ω (for other coannihilation scenarios arXiv:1510.0629v1)

Not considered

- ➤ MicrOMEGAs ⇒ tree-level SUSY cross-sections
- > SUSY loop corrections can give $\sim 10\%$ (e.g. arXiv:0710.1821v3)
- This probably just a shift of the mean predicted Ω (for other coannihilation scenarios arXiv:1510.0629v1)
- $\rightarrow h_0 H_0$ mixing angle ignored
- Related to couplings of light Higgs

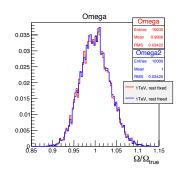


Summary

- \blacktriangleright In stau-coannihilation: if measure slepton, sneutrino and light gaugino masses with ILC precision and mixings to 1%
 - \implies ILC precision on relic density $\sim 2 \times$ Planck precision
- ➤ With current assumptions, uncertainties on mixing properties dominate over mass uncertainties
- Need a more reliable estimate of the ILC capabilities e.g. from tau polarisation and polarised cross sections
- > With real discoveries would need to consider loop corrections

Backup: 500 GeV assumptions

500GeV discoveries black=estimate, blue=analysis (arXiv:1508.04383v1)


$m_{\widetilde{\chi}_1^0}$	0.15%	$m_{\widetilde{\chi}^0_2}$	0.5%
$m_{\widetilde{ au}_1}$	0.16%	$m_{\widetilde{ au}_2}$	2.5%
$m_{\widetilde{e}_R}$	0.17%	$m_{\widetilde{\mu}_R}$	0.40%
$m_{\widetilde{e}_L}$	1%	$m_{\widetilde{\mu}_L}$	1%
$m_{\widetilde{ u}_e,\widetilde{ u}_\mu,\widetilde{ u}_ au}$	1%	$m_{\widetilde{\chi}_1^{\pm}}$	1%
$\theta_{ au}$	1%	$A_{ au}$	20%
N _{11,12,13,14}	1% each	Umix, Vmix	20% each

Unobservables at 500GeV - uniform variations

Onobscivables at 500 dev - uniform variations				
$m_{\widetilde{\chi}_3^0,\widetilde{\chi}_4^0}$	0.25 — 2 TeV	$m_{\widetilde{\chi}_2^\pm}$	0.25 – 2 TeV	
m_{H_0,A_0,H^\pm}	0.4 – 2 TeV			
$m_{\widetilde{d}_L,\widetilde{u}_L,\widetilde{s}_L,\widetilde{c}_L}$ all equal	1 – 50 TeV	$m_{\widetilde{d}_R,\widetilde{u}_R,\widetilde{s}_R,\widetilde{c}_R}$	$=m_{\widetilde{d}_L}-100\;{\sf GeV}$	
$m_{\widetilde{t}_1,\widetilde{t}_2,\widetilde{b}_1,\widetilde{b}_2}$ independent	0.6 - 50 TeV	$m_{\widetilde{g}}$	1 – 50 TeV	
$\theta_{t,b}$	$-\pi/2 o \pi/2$		$-5000 \rightarrow 5000$	

Backup: 1 TeV assumptions

1 TeV observations			
$m_{\widetilde{e}_R}$	0.17%	$m_{\widetilde{\mu}_R}$	0.40%
$m_{\widetilde{e}_L}$	1%	$m_{\widetilde{\mu}_L}$	1%
$m_{\widetilde{ au}_1}$	0.16%	$m_{\widetilde{ au}_2}$	2.5%
$\theta_{ au}$	1%	$A_{ au}$	20%
$m_{\widetilde{ u}_e,\widetilde{ u}_\mu,\widetilde{ u}_ au}$	1%	$m_{\widetilde{\chi}_1^{\pm}}$	1%
$m_{\widetilde{\chi}_1^0}$	0.15%	$m_{\widetilde{\chi}^0_2}$	0.5%
N _{12,13,14}	1% each	Umix, Vmix	20% each
$m_{\widetilde{\chi}^0_3,\widetilde{\chi}^0_4}$	1%	$m_{\widetilde{\chi}_2^\pm}$	1%
$m_{H_0,A_0,H^{\pm}}$	1%		

	Į	<u>Jnobserved</u>	<u>at 1</u>	TeV
m~	علام الد	1 - 50 TeV	m~	

$m_{\widetilde{d}_L,\widetilde{u}_L,\widetilde{s}_L,\widetilde{c}_L}$ all equal	1 – 50 TeV	$m_{\widetilde{d}_R,\widetilde{u}_R,\widetilde{s}_R,\widetilde{c}_R}$	$=m_{\widetilde{d}_L}-100~{ m GeV}$
$m_{\widetilde{t}_1,\widetilde{t}_2,\widetilde{b}_1,\widetilde{b}_2}$ independent	0.6 - 50 TeV	$m_{\widetilde{g}}$	1 – 50 TeV
$\theta_{t,b}$	$0 o \pi/2$	$A_{t,b}$	0 ightarrow -5000

Backup: Variation of dark matter with masses

➤ In STC8 with many light sparticles

Observable	\pm variation	\pm change in Ω
$m_{\widetilde{\chi}^0_1}$	1%	5%
$m_{\widetilde{ au}_1}$	1%	5%
$m_{\widetilde{l_R}}$	1%	< 0.5%
$m_{\widetilde{l_i}}^{\gamma_i}$	1%	< 0.01%
$m_{\widetilde{ u}}$	10%	< 0.1%
m_{H,A_0}	10%	< 0.1%
$m_{\widetilde{\chi}_i}$	10%	< 0.1%
$m_{\widetilde{q}}$	10%	< 0.01%

➤ LSP and stau1 mass crucial, others much less important

Backup: Variation of dark matter with mixings

➤ In STC8 with many light sparticles

"observable"	\pm variation	\pm change in Ω
stau mixing angle $ heta_ au$	1%	1%
binoness of LSP N_{11}	1%	3.5%
other neutralino mixings	100%	$\sim 1-4\%$
Higgs mixing	50%	2%
other mixings	50%	< 0.1%

 \blacktriangleright Stau and LSP mixing also crucial, Higgs and other neutralino mixings needed to $\sim 10\%$

