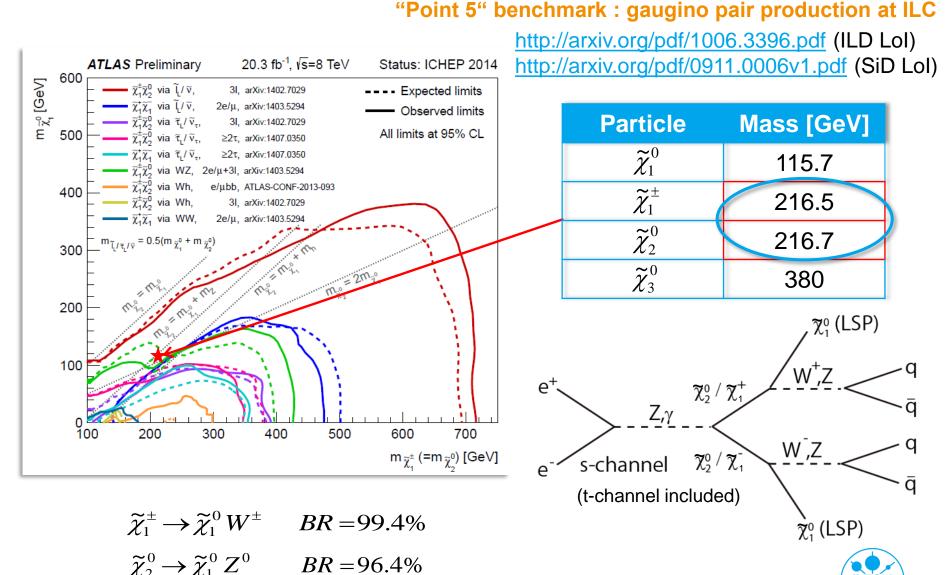
Gaugino Properties Determination in the Fully Hadronic Decay Mode at the ILC

Jenny List, Mikael Berggren, <u>Madalina Chera</u> LC Forum, DESY, 17 November 2015



Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Study case: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production at the ILC

Madalina Chera | LC Forum | 17 Nov. 2015 | Page 2

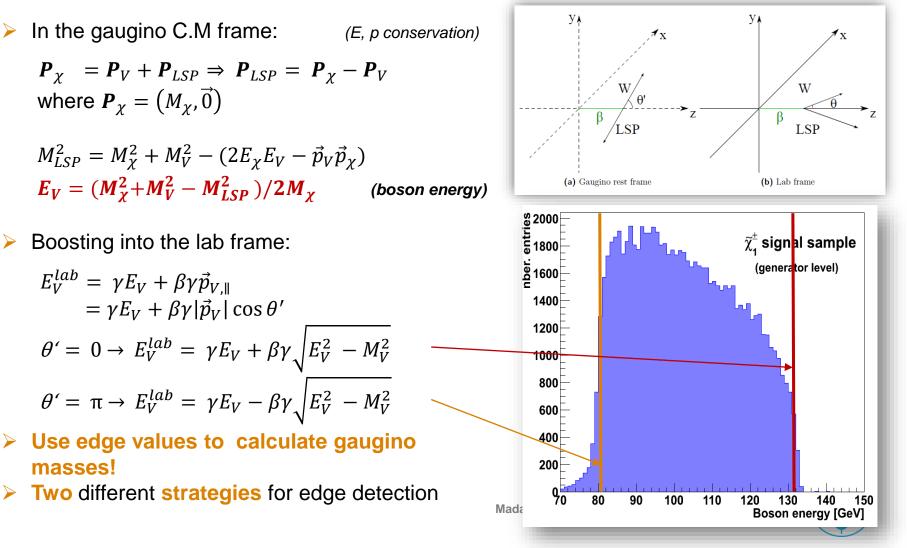
Analysis Strategy

- Remove γγ → hadrons background: applied k_T exclusive algorithm ↔ 6 jets, R=1.1 (FastJet)
- > Cluster event into 4 jets (Durham)
- Run kinematic fit (equal mass constraint: M_{jj1} = M_{jj2})

→ choose jet pairing with best fit probability

- Run isolated lepton finder (J. Tian and C. Dürig)
- > Perform SUSY selection $(12/16 \text{ cuts} \rightarrow \text{see } \frac{\text{back-up slide}}{\text{slide}})$

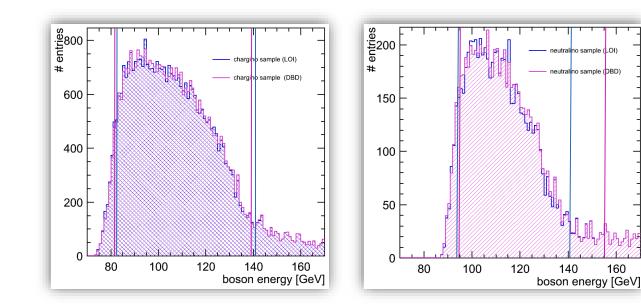
	Sample	$\tilde{\chi}_1^{\pm}$ hadronic	${\tilde \chi_2}^0$ hadronic	
Selection for	Efficiency	$90.8\% \rightarrow 53\%$	91% → 30%	
mass	Purity	14.7% → 6 3%	2.6% → 38 %	
	Efficiency	72%	73%	
	Purity	27%	5%	

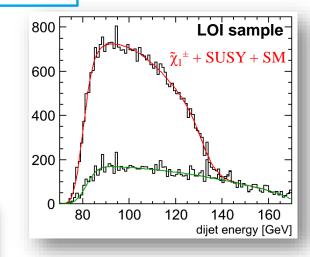


Mass Measurements

Gaugino Mass Measurement

Mass difference to LSP ($\tilde{\chi}_1^0$) is **larger** than $M_Z \rightarrow$ decays of real gauge bosons
This is a **two-body decay** (well known kinematics!)




LOI Strategy: Fit the Boson Energy Spectrum

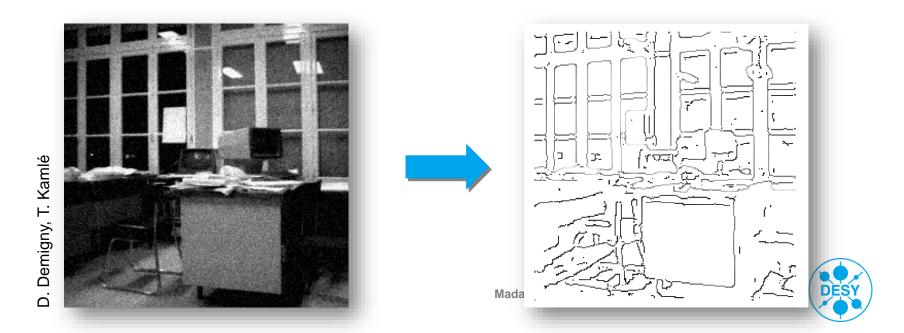
Fit dijet energy spectrum and obtain edge positions:

$$f(x; t_{0_{1}}, b_{0_{2}}, \sigma_{1_{2}}, \gamma) = f_{SM} + \int_{t_{0}}^{t_{1}} (b_{2}t^{2} + b_{1}t + b_{0})V(x - t, \sigma(t), \gamma)dt$$

- The only free fit parameters: the edge positions t_0 and t_1
- Polynomial → Spectrum slope
- Voigt function \rightarrow detector resolution and gauge boson width
- Issues with the LOI method:

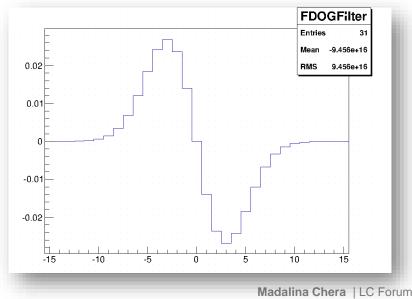
Fit method highly sensitive to small fluctuations in energy distribution.

Apply a different edge extraction method!


160

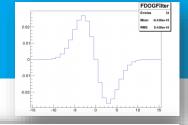
DBD Strategy: Endpoint Extraction using an FIR Filter

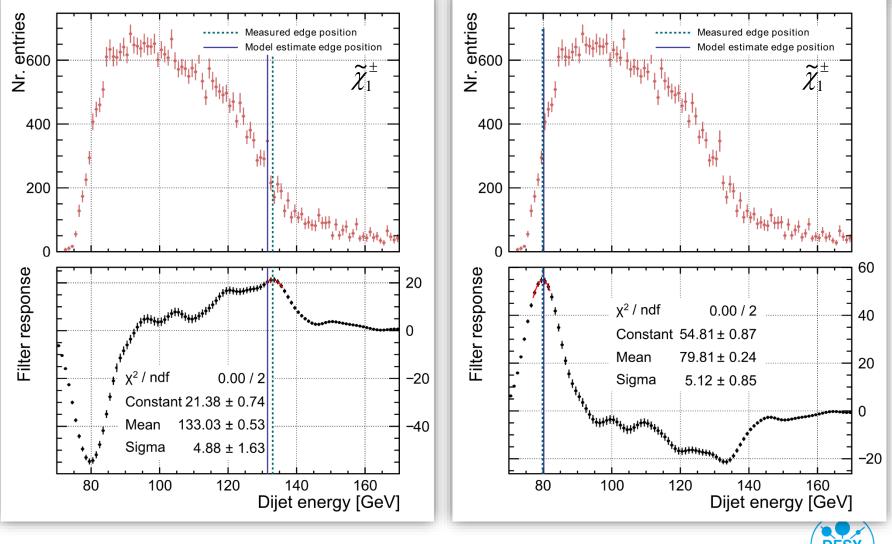
- > Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- > FIR filters can operate both on discrete as well as continuous values.
- The concept of "finite impulse response" ↔ the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.


$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k] \leftarrow \text{the input signal}$$

the filter coefficients (weights)

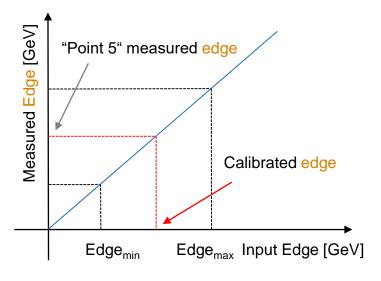
> y is obtained by convolving the input signal with the (finite) weights


Choosing the Appropriate Filter


- Canny's criteria for an optimal filter:
 - J. F. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 679-698, 1986
 - **Good detection**: probability of obtaining a peak in the response must be high
 - Localisation: standard deviation of the peak position must be small
 - Multiple response minimisation: probability of false postive detection must be small
- Canny has shown that an optimal filter is very similar to the first derivative of a Gaussian

Applying the FIR Filter on DBD Data: Results

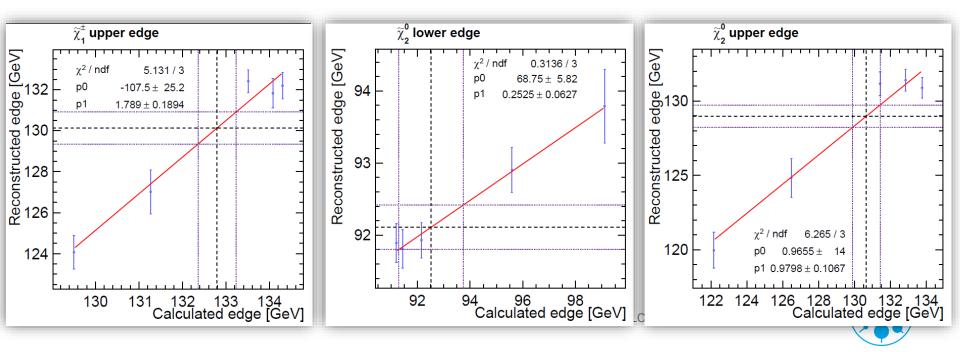
Edge Extraction Comparison


	True	True 80.17		13	131.53 93.2		24	129.0	6
	Sim.	Edge V	V _{low} [GeV]	Edge W	high [GeV]	Edge Z _{lo}	_w [GeV]	Edge Z _{high}	[GeV]
filter	LOI	80.	4±0.2	129	.9±0.7	92.3:	±0.4	128.3±0	0.9
- fil	DBD	79.	6±0.2	130	.1±0.8	92.1:	±0.3	128.9±(3.8
		Sample	Mass _{X̃1} ±	[GeV]	Mass $\tilde{\chi}_2^0$	[GeV]	Mass	χ̃ ₁ ⁰ [GeV]	
		TRUE	216.	5	216	.7	1	15.7	
·	\searrow	LOI	216.9 1	-3.2	220.0:	±1.4	118	8.4±1.1	
		DBD	216.8 1	-3.2	220.6:	±1.2	118	8.2±0.9	

- The filter method is more stable in determining the edge position
- The mass values extracted from the LOI and DBD samples: well compatibile within their statistical errors
- > The systematic errors will be addressed by a mass calibration study

Edge Calibration → Mass Calibration

- > Performed **only** for DBD sample \rightarrow account for systematics
- > Calibrate the edge positions \rightarrow then calculate the calibrated mass(es)
- Edge calibration procedure:
 - Vary input masses: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ varied simultaneously, LSP mass fixed!
 - M_{χ}^{min} =210 GeV $\leftrightarrow M_{\chi}^{max}$ =225 GeV, 3 GeV step
 - Measure edges for each mass sample
 - → Obtain calibration curve
- > Generate the same number of signal $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ events for all samples
- The SM background is the same for all mass samples


Edge Calibration Results I

- Three different aspects:
 - 1. Calibrate edges measured on generator level w.r.t. calculated edges

→ study effects of ISR emission, beamstrahlung $[0.8\% \rightarrow 1.8\%]$

- 2. Calibrate edges measured on reconstruction level w.r.t. generator level edges
 - \rightarrow study simulation and reconstruction effects [0.2% \rightarrow 0.9%]
- 3. Calibrate edges measured on reconstruction level w.r.t calculated edges

→ take all the effects into account

Edge Calibration II

- Three different aspects:
 - 1. Calibrate edges measured on generator level w.r.t. calculated edges

→ study effects of ISR emission, beamstrahlung $[0.8\% \rightarrow 1.8\%]$

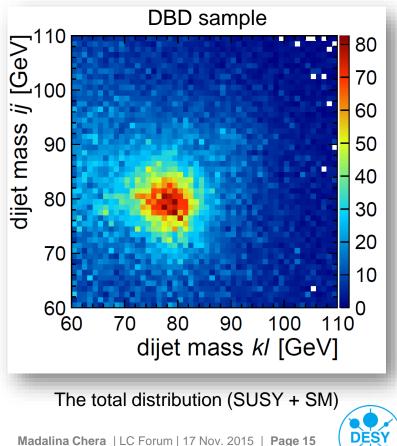
- 2. Calibrate edges measured on reconstruction level w.r.t. generator level edges
 - \rightarrow study simulation and reconstruction effects [0.2% \rightarrow 0.9%]
- 3. Calibrate edges measured on reconstruction level w.r.t calculated edges
 - \rightarrow take all the effects into account [1.1 \rightarrow 2%]

Gaugino	Mass w/out cal.	Mass with calib.	LOI Mass	Model Mass
$\widetilde{\chi}_1^{\pm}$	216.7 ± 3.1	214.1 ± 4.8	220.9 ± 2.9	216.5 [GeV]
$\widetilde{\chi}^0_2$	220.4 ± 1.3	216.9 ± 3.4	220.6 ± 1.7	216.7 [GeV]
$\widetilde{\chi}_{1}^{0}$	118.1 ± 0.9	115.5 ± 1.8	118.9 <u>+</u> 1.0	115.7 [GeV]

Cross Section Measurement

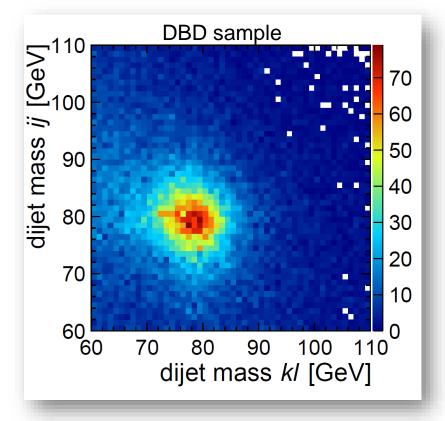
Cross Section Determination Method

> Interested in:
$$\sigma(e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_1^-) \times \text{BR} (\tilde{\chi}_1^+\tilde{\chi}_1^- \to \tilde{\chi}_1^0\tilde{\chi}_1^0W^+W^-)$$
$$\sigma(e^+e^- \to \tilde{\chi}_2^0\tilde{\chi}_2^0) \times \text{BR} (\tilde{\chi}_2^0\tilde{\chi}_2^0 \to \tilde{\chi}_1^0\tilde{\chi}_1^0Z^0Z^0)$$


- Relevant observable: the reconstructed dijet [boson] mass
- Relevant distribution: the reconstructed mass of one dijet pair versus the other:

- AFTER applying all selection cuts
- Considering only those events for which the kinematic fit has converged
- Including all possible dijet associations

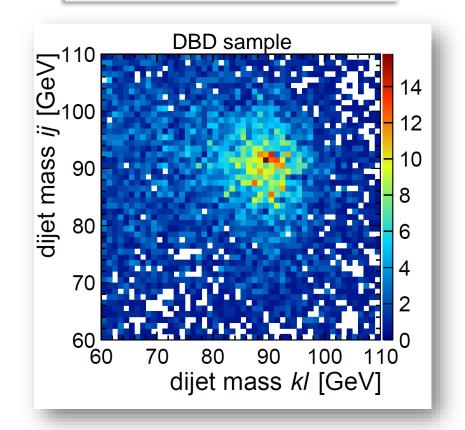
> Since $\sigma \propto \frac{Nr.events}{\varepsilon \cdot \int \mathcal{L}} \Rightarrow$ the goal is to identify the number of $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^{0}$ events from the total distribution



Perform 2D Template fit.

- > Use Monte Carlo data to produce:
 - the chargino template

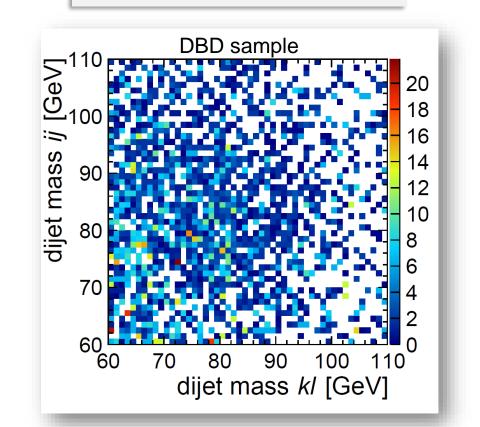
- After preselection
- Kinematic fit converged
- All dijet permutations included



Chargino events only

- > Use Monte Carlo data to produce:
 - the chargino template
 - the neutralino template

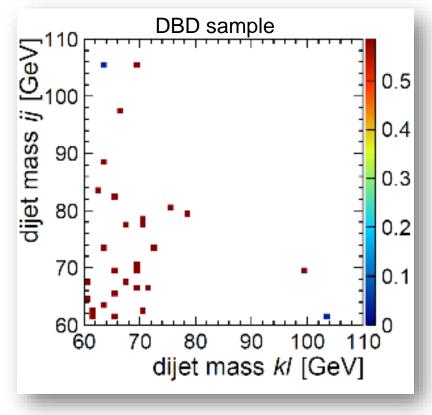
- After preselection
- Kinematic fit converged
- All dijet permutations included


Neutralino events only

> Use Monte Carlo data to produce:

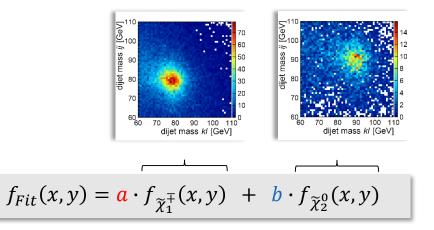
- the chargino template
- the neutralino template
- the SM background template

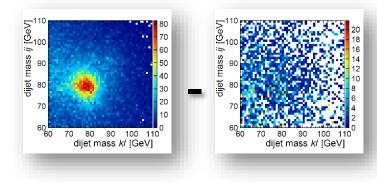
- After preselection
- Kinematic fit converged
- All dijet permutations included



Standard Model events only

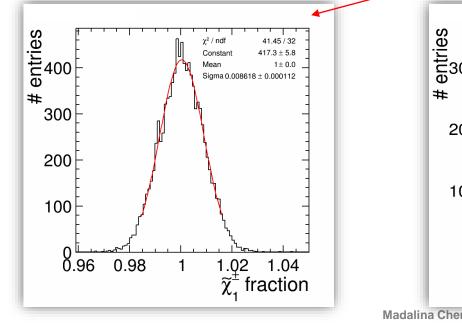
- > Use Monte Carlo data to produce:
 - the chargino template
 - the neutralino template
 - the SM background template
 - the SUSY background → **negligible**!

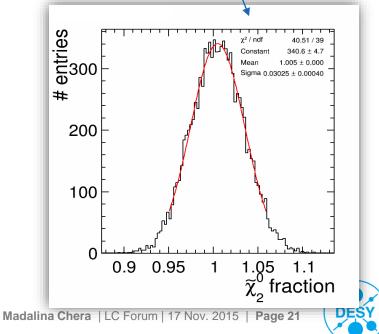

- After preselection
- Kinematic fit converged
- All dijet permutations included



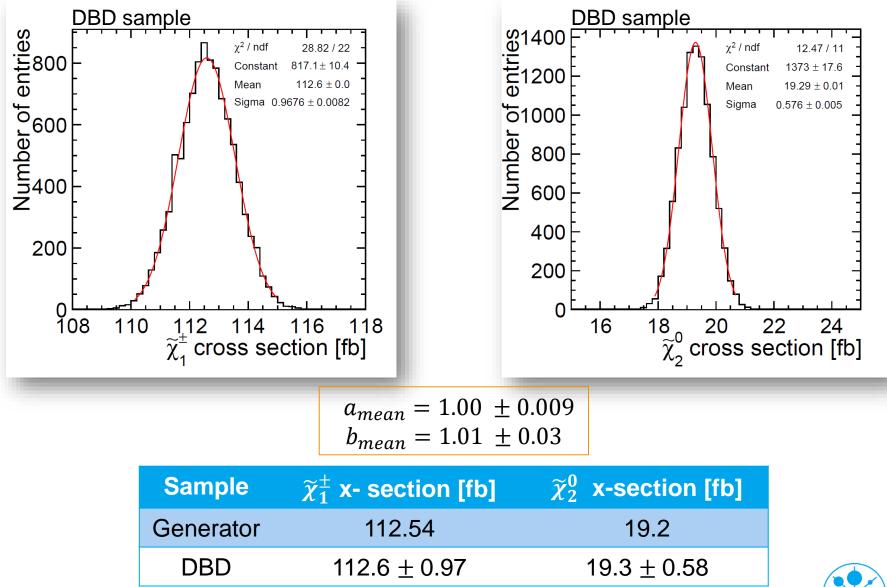
SUSY background events only

- The fitting procedure:
- Subtract the SM background template from the total data distribution
- Defining the two-dimensional fitting function:


- *a* and $b \rightarrow$ the only free parameters
- *a* and *b* = the fraction of template events found in the total data distribution
- in an ideal case, a = b = 1
- > Apply the template fit on the remaining data events



2D Template Fit Toy Monte Carlo


Note: limited amount of Monte Carlo data available \rightarrow **toy Monte Carlo study**

- Running the toy MC: >
 - Treat the total data distribution as a p.d.f
 - N^{initial} Randomly sample the initial distribution N times: $N = N_{evts.}^{initial} \pm$ evts.
 - Subtract the SM template from the new distribution
 - Apply the fitting function \rightarrow obtain one value each for *a* and *b*
 - Repeat procedure 10000 times

2D Template Fit: Results

Madalina Chera | LC Forum | 17 Nov. 2015 | Page 22

Cross Section: 2D Template Fit – Comparison to LOI

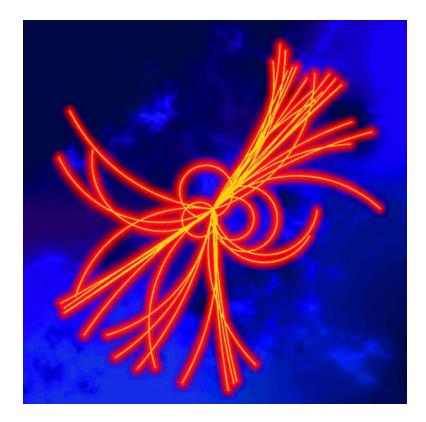
> The same procedure has been applied to the LOI data:

Sample	$\widetilde{\chi}_1^\pm$ x- section [fb]	$\widetilde{\chi}_2^0$ x-section [fb]
Generator level	132.2	22.8
LOI	132.2 ±1.1	23.2 ±0.7
arXiv:0906.5508v2	132.9 ± 0.9	22.5 ± 0.5

Sample	$\widetilde{\chi}_1^\pm$ x- section [fb]	$\widetilde{\chi}_2^0$ x-section [fb]
Generator level	112.5	19.2
DBD	112.6 ± 0.97	19.3 <u>+</u> 0.6

Note - the difference between cross sections at generator level

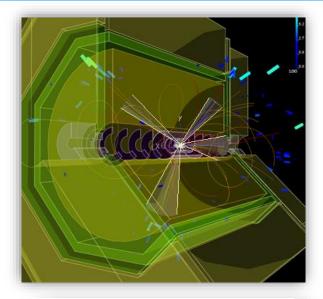
- Difference in beam-spectrum
- Missing processes Whizard 1.95

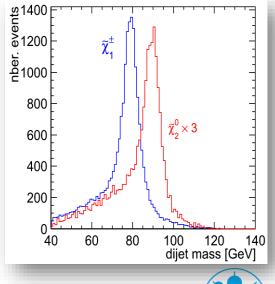

Conclusions

- The
 [˜]χ₁[±] and
 [˜]χ₂⁰ pair production in the framework of the "Point 5" benchmark
 has been presented as study case.
- Mass measurements:
 - LOI fitting method for edge measurement very sensitive to small changes
 - Applying a finite impulse response (FIR) filter instead: more robust (i.e., independent on distribution shape), provides just as good if not better statistical precision.
 - A mass calibration procedure was performed for the DBD sample: beam related effects twice as large effect as sim. + reco. impact!

Cross section measurements:

- A 2D template fitting procedure for cross-section determination was presented.
- Due to limited amounts of available Monte Carlo data perform a toy Monte Carlo study.
- Procedure applied both on LOI as well as on DBD data.
- Mean cross-section values very close to the model values in both cases → cross-check for the procedure performance.
- Despite increased detector realism and addition of $\gamma\gamma$ background statistical uncertainties are very similar for both data samples: $\approx 1\%$ for $\tilde{\chi}_1^{\pm}$ and $\approx 3\%$ for $\tilde{\chi}_2^{0}$


Study Case - Motivation


Signal topology:

- Four jets and missing energy (due to LSP)
- Hadronic decay modes of gauge bosons chosen as signal
- Both decay channels treated as signal in turn

$$\widetilde{\chi}_1^{\pm} \to \widetilde{\chi}_1^0 W^{\pm} \quad \text{and} \quad \widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 Z^0$$

- > $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ sample separation: essentially distinguish between W and Z pair events
- Challenge detector and particle flow performance

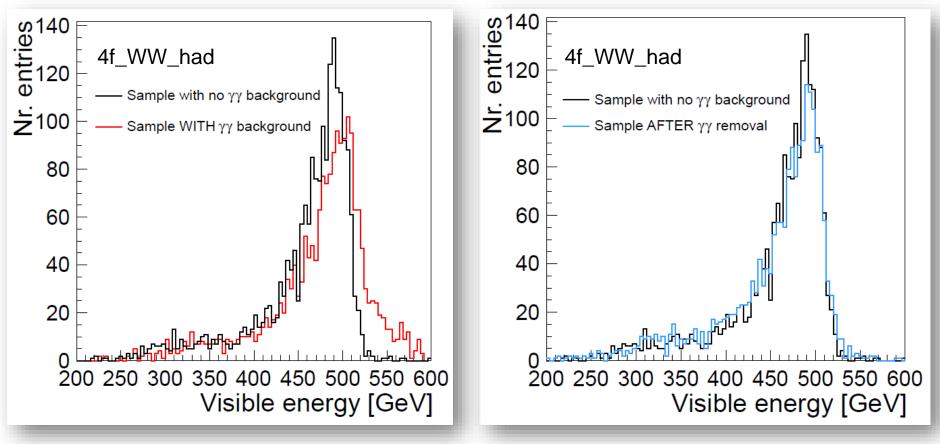
Madalina Chera | LC Forum | 17 Nov. 2015 | Page 26

Data Samples:

> Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{0}$ events

> LOI sample:		> DBD sample:		
•	Signal generated with Whizard1.51 Background generated with Whizard1.40	•	Signal (as well as SM background) generated with Whizard 1.95	
-	The RDR beam spectrum was used		The TDR beam spectrum was used	

Note: in the signal samples, the M_W was inadvertently lowered by Whizard to M_W = 79.8 GeV


- Signal + background were simulated and reconstructed with ilcsoft v01-06
- The jet energy scale was increased by 1%
- No γγ background overlay
- The analysis was run on existing data samples

- Some processes could not be produced in Whizard 1.95
- Signal + background were simulated and reconstructed with ilcsoft v01-16-02
- The jet energy scale was not increased
- The γγ background overlay was taken into account
- The analysis was run

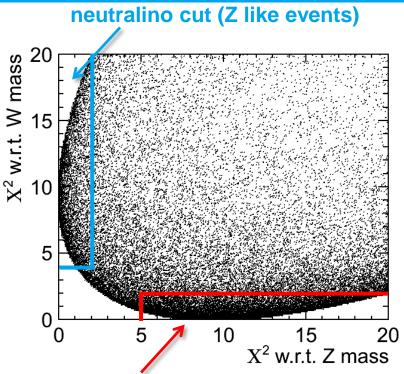
Analysis Strategy

Remove γγ → hadrons background: applied k_T exclusive algorithm ↔ 6 jets, R=1.1 (FastJet)

Sample	$\tilde{\chi}_1^{\pm}$ hadronic	$\tilde{\chi}_2^0$ hadronic	SUSY	үү & үе	2 fermions	4 fermions	6 fermions
	(signal)	(signal)	background	(SM)	(SM)	(SM)	(SM)
No cut	27427	4897	71450	173791	1.1239e+07	1.60385e+ 07	589188
No isolated leptons found	27281	4857	39592	51136	1.02105e+ 07	9.21406e+06	372419
Nber. PFOs in event	27274	4853	28936	38553	8.61602e+06	6.73891e+06	311637
Nber. tracks with $P_T > 1$ GeV in event	27228	4851	25530	34803	7.60753e+06	6.22246e+06	282188
Thrust	27213	4845	24996	34347	4.57776e+06	4.9343e+06	281913
Nber. tracks in event	27193	4841	23049	33647	4.27554e+06	4.81107e+06	281652
Visible energy	27159	4831	20935	21830	2.88111e+06	926895	17059
Jet energy	27141	4829	17895	21360	2.55856e+06	846448	16914
Jet cos(θ)	26530	4729	15964	17582	1.78384e+06	607998	16049
y ₃₄	26372	4704	11202	16231	330943	299658	14892
Nber tracks in jet	25434	4585	8083	14666	261520	205867	12125
Miss cos(θ)	25171	4535	8020	4489	9171	117756	11656
Lepton energy	24913	4460	7749	4281	8432	109365	10121
Nber. PFOs in jet	24737	4444	7305	4148	8253	102304	9783
Miss cos(θ)	19868	3589	6135	1383	1100	53957	6955
Missing mass	19830	3584	6134	1175	931	41326	1764
Kinematic fit converged	19753	3565	5966	1152	839	40263	1749

Blue: selection for the mass measurement Red: selection for the cross section measurement

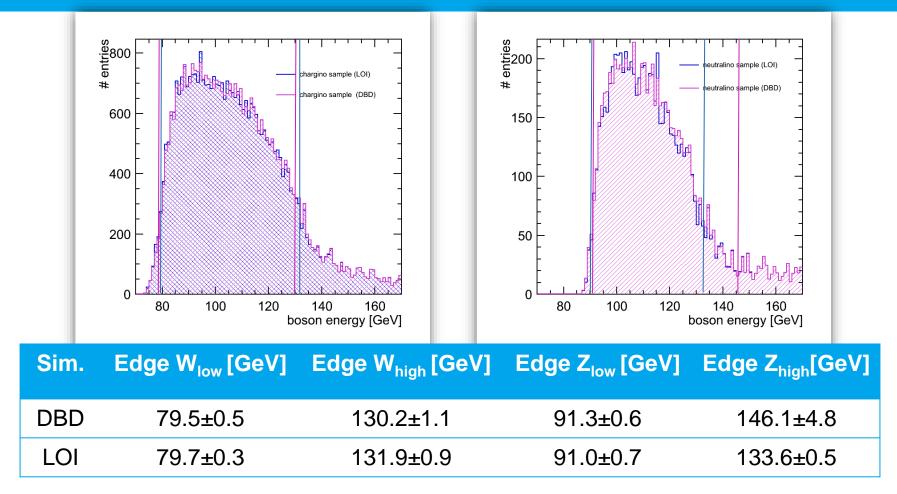
$\tilde{\chi}_1{}^{\pm}$ and $\tilde{\chi}_2{}^0$ Signal Separation


 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\sqrt{\sigma^{2}}}$$

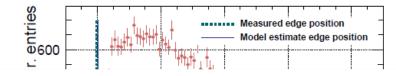
min $\chi^2 \! \rightarrow \! \tilde{\chi}_1{}^{\pm} \, and \, \tilde{\chi}_2{}^0 \, separation$

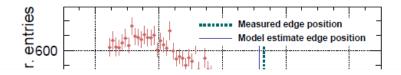
- > Downside: lose statistics
 - Cut away 47% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 61% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:


Sample	$\tilde{\chi}_1{}^{\pm}$ hadronic	$\tilde{\chi}_2^0$ hadronic	
Efficiency	90.8%	91%	
Purity	14.7%	2.6%	

chargino cut (W like events)

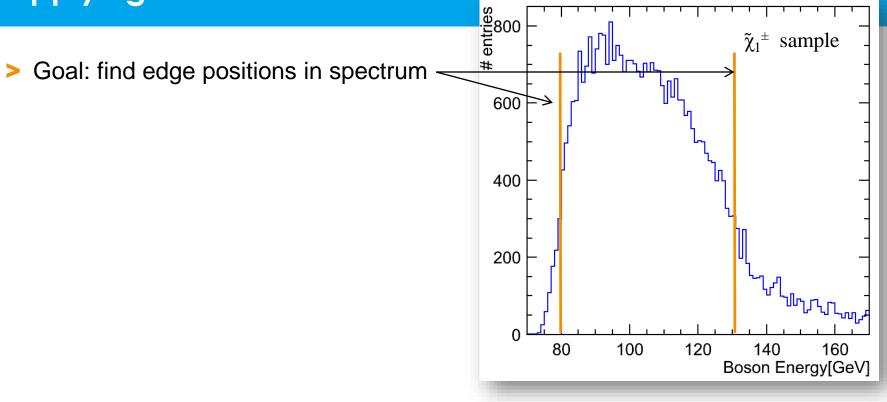
Obs.	DBD		
	$\tilde{\chi}_1{}^{\pm}$	$\tilde{\chi}_2^0$	
Efficiency	53%	30%	
Purity (total)	63%	38%	
Purity (SUSY)	94%	62%	
	Efficiency Purity (total) Purity (SUSY)	$\begin{array}{c} \tilde{\chi}_{1}^{\pm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	


Issues of the LOI Strategy

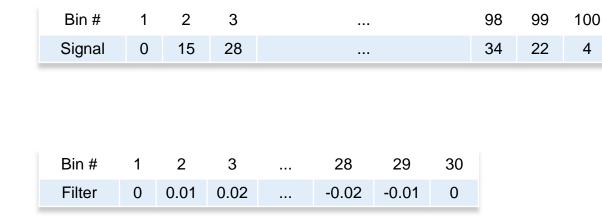


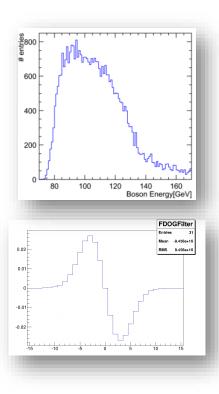
The fitting method appears to be highly dependent on small changes in the fitted distribution → it is NOT appropriate for comparing the two samples. We need to apply a different edge extraction method!

Applying the FIR Filter on DBD Data: Results

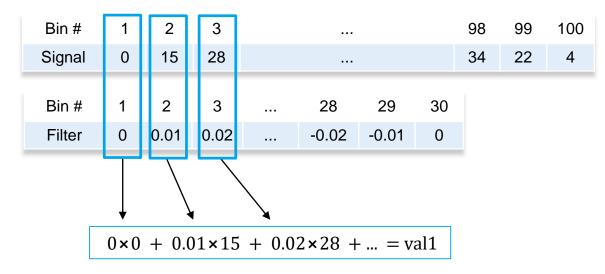


	Calc.	80.17	131.53	93.24	129.06
	Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
[LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5
Ę	DBD	79.5±0.5	130.2±1.1	91.3±0.6	146.1±4.8
lter	LOI	80.4±0.2	129.9±0.7	92.3±0.4	128.3±0.9
	DBD	79.6±0.2	130.1±0.8	92.1±0.3	128.9±0.8
	- 1	1111 1444 Juliu	1 -	+ + Sigma 4.88 + 1.0	


Statistical errors determined from toy Monte Carlo



- > Goal: find edge positions in spectrum
- > Strategy:
 - Choose an FIR filter (kernel)
 - Note: filter length << signal histogram length</p>
 - Treat both signal histogram as well as filter as arrays:

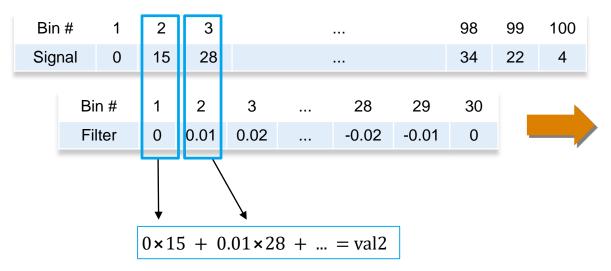


Thanks to S. Caiazza.

> Goal: find edge positions in spectrum

> Strategy:

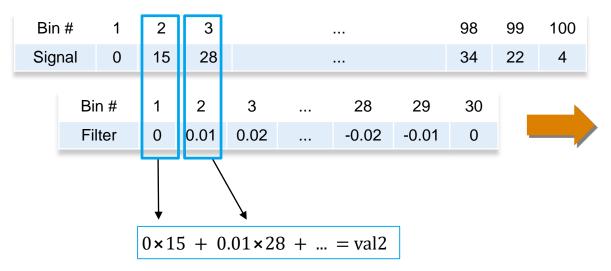
- Choose an FIR filter (kernel)
- Note: filter length << signal histogram length</p>
- Treat both signal histogram as well as filter as arrays
- Calculate dot product between Signal and Filter → obtain one value



> Goal: find edge positions in spectrum

> Strategy:

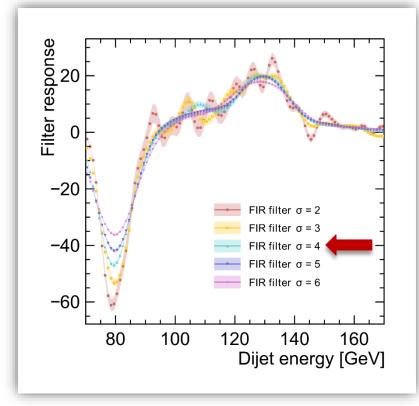
- Choose an FIR filter (kernel)
- Note: filter length << signal histogram length</p>
- Treat both signal histogram as well as filter as arrays
- Calculate dot product between Signal and Filter → obtain one value



 "Move" Filter along the (length) of the signal → obtain more values, which will form the total filter response

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- > Procedure:
 - Choose an FIR filter (kernel)
 - Note: filter length << signal histogram length</p>
 - Treat both signal histogram as well as filter as arrays
 - Calculate dot product between Signal and Filter → obtain one value


 "Move" Filter along the (length) of the signal → obtain more values, which will form the total filter response

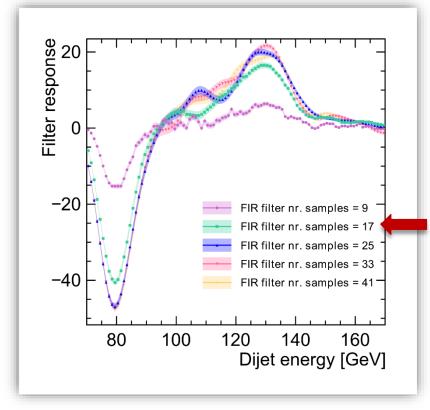
- > There are 3 filter parameters that can be optimised
 - The width of the Gaussian (σ)
 - The kernel size (# bins of the filter histogram)
 - The binning of the input boson energy histogram

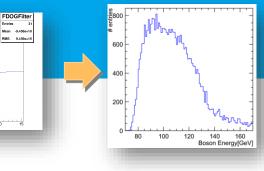
- > There are 3 filter parameters that can be o_{r} .
 - The width of the Gaussian (σ)
 - The kernel size (# bins of the filter histogram)
 - The binning of the input boson energy histogram

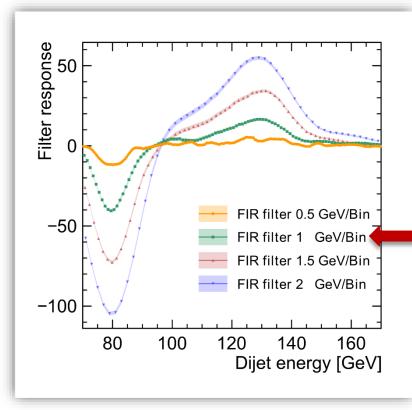
(the kernel and bin sizes were fixed)

600

100 120 140 160 Boson Energy[GeV]

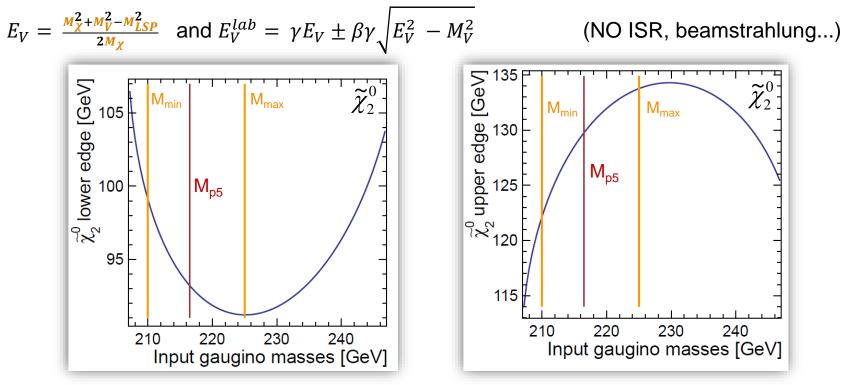

FDOGFilt


- There are 3 filter parameters that can be or the parameters tha
 - The width of the Gaussian (σ) = 4
 - The kernel size (# bins of the filter histogram)


The binning of the input boson energy histogram

- There are 3 filter parameters that can be optimized
 - The width of the Gaussian (σ) = 4
 - The kernel size (# bins of the filter histogram) = 17
 - The binning of the input boson energy histogram (the σ and kernel sizes were fixed)

FDOGFilt


600

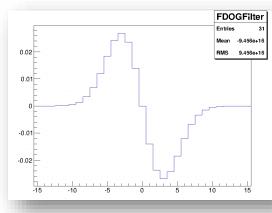
140 160 Boson Energy[GeV]

100 120

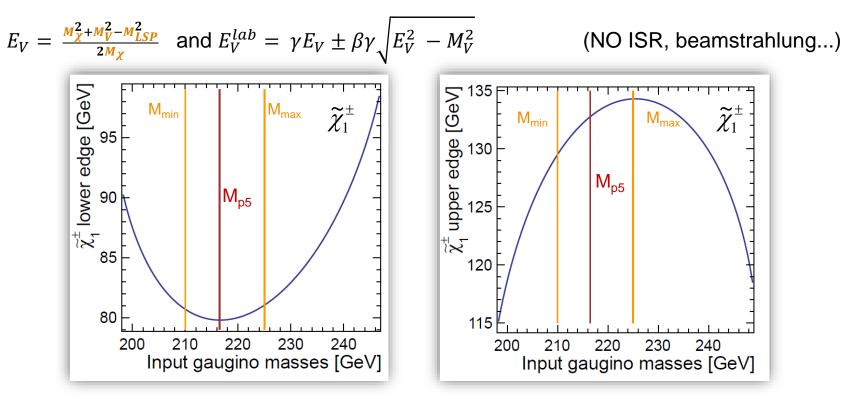
Edge Calibration

The relation edge position ↔ input gaugino mass is given by:

> Ignore $\widetilde{\chi}_1^{\pm}$ low edge

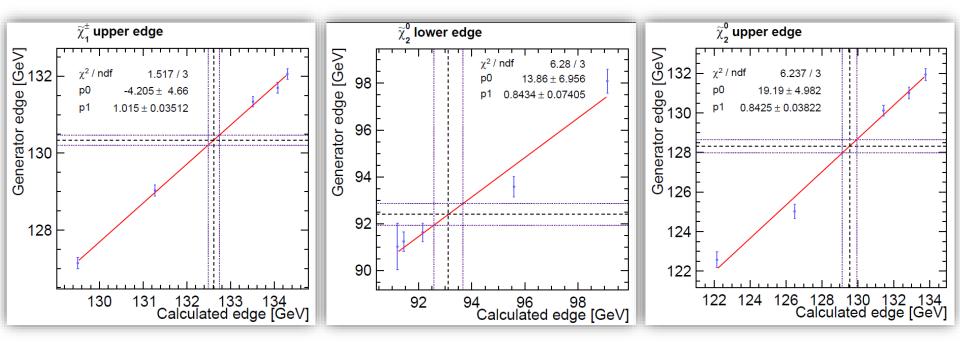

- > Chosen mass range: M_{χ}^{min} =210 GeV $\leftrightarrow M_{\chi}^{max}$ =225 GeV, in steps of 3 GeV
- > Generate the same number of signal $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ events for all samples
- > The SM background is the same for all mass samples

Choosing the Appropriate Filter


- Canny's criteria for an optimal filter:
 - J. F. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 679-698, 1986
 - Good detection: probability of obtaining a peak in the response must be high
 - Localisation: standard deviation of the peak position must be small
 - Multiple response minimisation: probability of false postive detection must be small
- Canny has shown that an optimal filter is very similar to the first derivative of a Gaussian
- There are 3 filter parameters that can be optimised (via toy Monte Carlo)
 - The width of the Gaussian (σ) = **4**
 - The kernel size (# bins of the filter histogram) = 17
 - The binning of the input boson energy histogram = 1 GeV/bin
- Edge positions stable within max.1.8% when varying filter parameters
- (Reminder: LOI edge fluctuations [from LOI vs DBD comparison]: 9.4%)

Edge Calibration

> The relation edge position \leftrightarrow input gaugino mass is given by:



Edge Calibration II

- > Three different aspects:
 - 1. Calibrate edges measured on generator level w.r.t. calculated edges

→ study effects of ISR emission, beamstrahlung

Edge Calibration II

> Three different aspects:

1. Calibrate edges measured on generator level w.r.t. calculated edges

→ study effects of ISR emission, beamstrahlung

Gaugino	Generator [GeV]		Calculated [GeV]		Calibrated [GeV]	
	E_{low}	E_{high}	E_{low}	E_{high}	E_{low}	E_{high}
$\tilde{\chi}_1^{\pm}$		130.34 ± 0.13		132.76		132.61 ± 0.13
$ ilde{\chi}_2^0$	92.395 ± 0.46	128.32 ± 0.34	93.09	129.92	$93.11 {\pm} 0.55$	129.54 ± 0.4

• Beam effects have an impact of $0.8\% \rightarrow 1.8\%$

Edge Calibration II

Three different aspects:

1. Calibrate edges measured on generator level w.r.t. calculated edges

→ study effects of ISR emission, beamstrahlung $[0.8\% \rightarrow 1.8\%]$

2. Calibrate edges measured on reconstruction level w.r.t. generator level edges

→ study simulation and reconstruction effects

Gaugino	Reconstructed [GeV]		Generat	or [GeV]	Calibrated [GeV]	
	E_{low}	E_{high}	E_{low}	E_{high}	E_{low}	E_{high}
$\tilde{\chi}_1^{\pm}$		129.21 ± 0.299		$130.34{\pm}0.13$		$130.39 {\pm} 0.28$
$ ilde{\chi}^0_2$	92.62 ± 0.24	127.82 ± 0.35	92.395 ± 0.46	128.32 ± 0.34	92.21 ± 0.29	$128.64 {\pm} 0.31$

• Simulation and reconstruction effects have an impact of $0.2\% \rightarrow 0.9\%$!

Edge Calibration Results II

> Three different aspects:

1. Calibrate edges measured on generator level w.r.t. calculated edges

study effects of ISR emission, beamstrahlung $[0.8\% \rightarrow 1.8\%]$

- 2. Calibrate edges measured on reconstruction level w.r.t. generator level edges study simulation and reconstruction effects $[0.2\% \rightarrow 0.9\%]$
- 3. Calibrate edges measured on reconstruction level w.r.t calculated edges take all the effects into account $[1.1 \rightarrow 2\%]$

Gaugino	Reconstructed [GeV]		Calculated [GeV]		Calibrated [GeV]	
	E_{low}	E_{high}	E_{low}	E_{high}	E_{low}	E_{high}
$\tilde{\chi}_1^{\pm}$		$130.13 {\pm} 0.78$		132.77		132.79 ± 0.44
$ ilde{\chi}^0_2$	92.11 ± 0.31	128.99 ± 0.75	93.09	129.92	92.52 ± 1.23	130.67 ± 0.77

• Cumulative effects have an impact of $1.1\% \rightarrow 2\%$!

