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The top quark

> The heaviest elementary particle discovered so far

> Discovered in 1995 → only observed in Tevatron (pp) and 
LHC (pp)

> Mainly produced in pairs

> A peculiar quark with an enormous mass

 large coupling to the Higgs

 It decays before hadronize 

> measure its spin polarization
> Experimental signature: quasi-free quark
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Motivation for precise top quark mass measurements

> Is a fundamental parameter of the Standard Model.

> Largest coupling to the Higgs coupling → special role in the ElectroWeak Sector in the SM and BSM

> Consistency of the Standard Model and Beyond Standard Models
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[Heinemeyer et al  updated to summer 2014]
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Motivation for precise top quark mass measurements

> Standard Model Vacuum stability

> “Only asummption”: there is no no new physics up to the Planck scale

Irles, A. | Physics at Terascale | 18th November 2015



First and Last Name  |  Title of Presentation  |  Date  |  Page 5

Motivation for precise top quark mass measurements

> Standard Model Vacuum stability

> “Only asummption”: there is no new physics up to the Planck scale
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Motivation for precise top quark mass measurements

> Standard Model Vacuum stability

> “Only asummption”: there is no new physics up to the Planck scale

> What if new physics?

JHEP09(2014)182
Branchina, Messina, Platania

(ellipses: best top quark kinematic mass)
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Top quark kinematic mass measurement 

Irles, A. | Physics at Terascale | 18th November 2015http://arxiv.org/abs/1509.04044

> Top quark mass measurement from the reconstruction of the invariant mass of its decay products.

> Very small experimental uncertainties 

 ~ 0.3-0.4% of its mass (~0.7% for b, ~2% for c and ~2-5% for light quarks)

 Huge improvement in last years (over expectations) in our understanding of the detectors and tt 
signal modelling.

 Experimental precision of ~0.6 GeV (best measurements)

> stress between different experiments results?

D0 CMS

JHEP09(2014)182
Branchina, Messina, Platania

Best measurements
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Top quark kinematic mass measurement 
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> Top quark mass extracted from the invariant mass of its decay products

 Top quark is treated as a “free stable particle” even since quarks do not exist as asymptotic free 
states (due to color charge)

 Mass calibrated to the mass definition used in the Monte Carlo simulations, dominated by soft-
collinear approximation.

> Mass interpretation? Read “First Tevatron+LHC combination” paper arXiv1403.442 conclusions

> m
t

kin = m
t

pole (1 + Δ), Δ → unknown  

 ¿~ 1 GeV ? (see for example Hoang, Stewart arXiv:0808.0222)
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Measuring the top quark mass

> Quark masses are not observables, are parameters of the theory (i.e. strong coupling constant)

> They need to be determined through their influence on hadronic observables

 Theoretical predictions are compared with measurements and the parameters (mass, strong 
coupling constant etc) are extracted through a fit

> Such observables should fulfill the following requirements:

 show good sensitivity

 be theoretically calculable and have small theoretical uncertainties.

 be defined using well defined mass scheme

 be experimentally accessible (small experimental uncertainties)
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P. Uwer,
La Thuile, Feb. 2013
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The R- observable
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> The observable :

> tt+1 jet cross section

 The production of extra gluons (quarks) depend on the top quark mass

> Differential cross section

 The mass dependence is enhanced in certain regions of the phase space

> Normalized cross section

 Cancelation and reduction of systematic uncertainties (theoretical and experimental)

m
0
=170 GeV

Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos   Eur.Phys.J. C73 (2013) 2438
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The R- observable: calculation
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> Robust observable with small NLO and PS corrections

 NLO vs LO, both at fixed order                       [Dittmaier et al Eur.Phys.J. C59 (2009)]

 NLO vs NLO+PS, calculation implemented in PowHeg and matched with PS algorithms 
(NLO+PS)                                                   [Alioli et al, JHEP 1201 (2012) 137]

NLO vs LO
→ small corrections

Fixed NLO vs NLO+PS
→ small corrections

Eur.Phys.J. C73 (2013) 2438
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The R-observable: mass dependence
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> Mass dependence

1 TeV 680 GeV 500 GeV 410 GeV

Eur.Phys.J. C73 (2013) 
2438
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The R-observable: mass sensitivity
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> High sensitivity

1 TeV 680 GeV 500 GeV 410 GeV

Eur.Phys.J. C73 (2013) 
2438
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Experimental determination

> This method is being used by the LHC experiments

> I will focus in the ATLAS result (the only which is already public)

 JHEP 1510 (2015) 121
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Selection and event reconstruction         JHEP 1510 (2015) 121
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> Semileptonic decay channel. Selection

 Exactly 1 lepton (no taus) with pT>25 GeV

 Large amount of missing energy (E
T

miss > 30 GeV)

 Two btagged jets with pT> 25 GeV (exploiting the long lifetime of the b-
hadrons)

 At least non b-tagged jets with pT>25 GeV

 M
T

W > 30 GeV, to reduce bkgs

> Kinematical event reconstruction to identify the tt candidates + the adittional 
jet candidate with pT> 50 GeV
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Correction to parton level                              JHEP 1510 (2015) 121

> Compare measured distribution with theoretical calculations

> Unfolding procedure based on the inversion and regularization of the matrix that describes the 
migrations between parton and detector level events.*

 Correct for acceptance and reconstruction efficiency and detector and hadronization effects.

 The method is no MC mass dependent

Irles, A. | Physics at Terascale | 18th November 2015

The cross section needs to be 
compared to theoretical 
calculations

in this case, to tt+1jet  NLO+PS 
calculations at parton level

* see backup for more details

Choice of the bin size to 
optimize the sensitivity→ 
efficiency in the diagonal 
>50%
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Mass extraction                                            JHEP 1510 (2015) 121

> Comparison with NLO+PS calculations

 Where V is the covariance matrix derived during the unfolding
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Uncertainties                                         JHEP 1510 (2015) 121

> The uncertainties are separated in three categories.

 Statistical uncertainties: is the dominant due to limited number of events in the data sample

> 1.50 GeV
 Experimental systematic uncertainties, associated to detector, background and signal mismodellings

> 0.94 GeV due to Jet Energy scale calibration
> 0.72 GeV associated to ISR/FSR modelling

 Theoretical systematic uncertainties: basically scale variations to estimate the uncertainties due to 
uncalculated higher orders in the perturbative calculation

> 0.95 GeV
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Best top quark pole mass determintation to date 
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Prospects of the method

> This is the first time that this method is applied to real data !!

 Room for better understanding of (lower?) experimental systematic uncertainties

> The precision is limited (in the presented measurement) by the statistical uncertainty

 Going to 8 TeV (without any other improvement in selection and reconstruction) the number of events 
is multiplied by ~ 5

> But more statistics might also means more sensitivity

 More statistics may allow bin size reduction → increase of sens.

Irles, A. | Physics at Terascale | 18th November 2015

Possible new binning

Current
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Summary

> Top quark mass measurements with high precision and a clear theoretical 
interpretation are crucial for top quark & EW physics understanding.

> Differential cross sections show great potential for this prospects: specifically the 
differential tt+1 jet cross section

 Sensitive method, with small theoretical uncertainties and a well defined 
mass scheme.

> First public result presented with this method (by ATLAS) is the best top-quark pole 
mass measurement to date.

> Future prospects: room for improvement and reduction of statistical and 
systematic uncertainties
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Backup slides
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Quark masses (introduction)

> Masses are parameters in the Lagrangian → normalized quantities (i.e. α
s
)

 Running mass scheme vs pole mass scheme (“stable particles” in event by event MC) 

> Physics is independent of the renormalization choice

Irles, A. | Physics at Terascale | 18th November 2015

Renormalon, pole mass has an intrinsic ambiguity of the order of Λ
QCD

Running mass definition provides better perturbative stability (tt)
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Measuring the top quark mass from inclusive cross sections

> Observable to measure and calculate: the tt inclusive cross section.

 MC simulations are used to correct for detector acceptance and reconstruction efficiency 
estimation.

 “Limited” theoretical sensitivity:        Δσ
tt
/σ

tt
≈-5 Δm

t
/m

t

 Limited precision? 

Irles, A. | Physics at Terascale | 18th November 2015

m
t

pole= 176.7+3.0 GeV m
t

pole= 172.9+2.5 GeV-2.6-2.8

Larger unc:
PDF  → ~1.5 GeV
Scale → ~1.0. GeV
Lum. → ~0.7 GeV
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Unfolding procedure in two steps
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The first step: Regularization matrix inversion to unfold to the tt+1jet system where the tt is defined at 
parton level and the jet is associated to the first powheg emission.

Second step → Small correction factor that introduces ~1% correction in the mass.
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