Top quark pole mass determinations from differential $t\bar{t}$ +1 jet cross sections.

E

The top quark

- > The heaviest elementary particle discovered so far
- > Discovered in 1995 \rightarrow only observed in Tevatron (pp) and LHC (pp)
- > Mainly produced in pairs

- > A peculiar quark with an enormous mass
 - large coupling to the Higgs
 - It decays before hadronize
 - > measure its spin polarization
 - > Experimental signature: quasi-free quark

Irles, A. | Physics at Terascale | 18th November 2015

- > Is a fundamental parameter of the Standard Model.
- > Largest coupling to the Higgs coupling → special role in the ElectroWeak Sector in the SM and BSM
- > Consistency of the Standard Model and Beyond Standard Models

[Heinemeyer et al updated to summer 2014]

- > Standard Model Vacuum stability
- > "Only asummption": there is no no new physics up to the Planck scale

$$M_H > 129.6 \text{ GeV} + 2.0 \left(m_t^{pole} - 173.34 \text{ GeV}
ight) - 0.5 \text{ GeV} \frac{lpha_s(M_Z) - 0.1184}{0.0007} \pm 0.3 \text{ GeV}$$

[Degrassi, Di Vita, Elias-Miro,Spinosa,Giudici ' 12, Alekhin, Djouadi, Moch ' 12]

- > Standard Model Vacuum stability
- > "Only asummption": there is no new physics up to the Planck scale
- > What if new physics?

- > Standard Model Vacuum stability
- > "Only asummption": there is no new physics up to the Planck scale
- > What if new physics?

[Degrassi, Di Vita, Elias-Miro,Spinosa,Giudici ' 12, Alekhin, Djouadi, Moch ' 12] $V(\phi) = \lambda \phi^4 / 4 + \lambda_6 \phi^6 / (6M_P^2) + \lambda_8 \phi^8 / (8M_P^4)$

(ellipses: best top quark kinematic mass)

Top quark kinematic mass measurement

- > Top quark mass measurement from the reconstruction of the invariant mass of its decay products.
- > Very small experimental uncertainties
 - ~ 0.3-0.4% of its mass (~0.7% for b, ~2% for c and ~2-5% for light quarks)
 - Huge improvement in last years (over expectations) in our understanding of the detectors and tt signal modelling.
 - Experimental precision of ~0.6 GeV (best measurements)
- > stress between different experiments results?

Top quark kinematic mass measurement

- > Top quark mass extracted from the invariant mass of its decay products
 - Top quark is treated as a "free stable particle" even since quarks do not exist as asymptotic free states (due to color charge)
 - Mass calibrated to the mass definition used in the Monte Carlo simulations, dominated by softcollinear approximation.

> Mass interpretation? Read "First Tevatron+LHC combination" paper arXiv1403.442 conclusions

Given the current experimental uncertainty on m_{top} , clarifying the relation between the top quark mass implemented in the MC and the formal top quark pole mass demands further theoretical investigations.

> $m_t^{kin} = m_t^{pole} (1 + \Delta), \Delta \rightarrow unknown$

¿~ 1 GeV ? (see for example Hoang, Stewart arXiv:0808.0222)

Measuring the top quark mass

- > Quark masses are not observables, are parameters of the theory (i.e. strong coupling constant)
- > They need to be determined through their influence on hadronic observables
 - Theoretical predictions are compared with measurements and the parameters (mass, strong coupling constant etc) are extracted through a fit
- Such observables should fulfill the following requirements:
 - show good sensitivity

- be theoretically calculable and have small theoretical uncertainties.
- be defined using well defined mass scheme
- be experimentally accessible (small experimental uncertainties)

P. Uwer, La Thuile, Feb. 2013

The R- observable

Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos Eur.Phys.J. C73 (2013) 2438

> The observable :

$$\mathcal{R}(m_{t}^{\text{pole}},\rho_{s}) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \frac{d\sigma_{t\bar{t}+1\text{-jet}}}{d\rho_{s}} (m_{t}^{\text{pole}},\rho_{s}), \quad \rho_{s} = \frac{2m_{0}}{\sqrt{s_{t\bar{t}j}}}$$
$$m_{o} = 170 \text{ GeV}$$

- > tt+1 jet cross section
 - The production of extra gluons (quarks) depend on the top quark mass

$$\sum_{e}^{\gamma} \sqrt{q_{qqg}} \sigma_{q\bar{q}g} \sim A(\alpha_s, \sqrt{s}) + B(\alpha_s, \sqrt{s}, m_q) \frac{m_q^2}{s} + \dots$$

- > Differential cross section
 - The mass dependence is enhanced in certain regions of the phase space
- > Normalized cross section
 - Cancelation and reduction of systematic uncertainties (theoretical and experimental)

The R- observable: calculation

- > Robust observable with small NLO and PS corrections
 - NLO vs LO, both at fixed order

[Dittmaier et al Eur.Phys.J. C59 (2009)]

 NLO vs NLO+PS, calculation implemented in PowHeg and matched with PS algorithms (NLO+PS)
 [Alioli et al, JHEP 1201 (2012) 137]

Page 11

Eur.Phys.J. C73 (2013) 2438

The R-observable: mass dependence

> Mass dependence

Page 12

Irles, A. | Physics at Terascale | 18th November 2015

Eur.Phys.J. C73 (2013)

The R-observable: mass sensitivity

> High sensitivity

Page 13

Irles, A. | Physics at Terascale | 18th November 2015

Eur.Phys.J. C73 (2013) 2438

Experimental determination

- > This method is being used by the LHC experiments
- > I will focus in the ATLAS result (the only which is already public)
 - JHEP 1510 (2015) 121

Determination of the top-quark pole mass using $t\bar{t}$ + 1-jet events collected with the ATLAS experiment in 7 TeV *pp* collisions

The ATLAS Collaboration

Abstract

The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the $t\bar{t}$ +1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton–proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb⁻¹. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, m_t^{pole} , is:

 $m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)} ^{+1.0}_{-0.5} \text{ (theory) GeV.}$

This result represents the most precise measurement of the top-quark pole mass to date.

Selection and event reconstruction

JHEP 1510 (2015) 121

- > Semileptonic decay channel. Selection
 - Exactly 1 lepton (no taus) with pT>25 GeV
 - Large amount of missing energy (E_τ^{miss} > 30 GeV)
 - Two btagged jets with pT> 25 GeV (exploiting the long lifetime of the bhadrons)
 - At least non b-tagged jets with pT>25 GeV
 - $M_{T}^{W} > 30 \text{ GeV}$, to reduce bkgs

$$m_T^W = \sqrt{2p_{T,I} p_{T,\nu} [1 - \cos\left(\phi_I - \phi_{\nu}\right)]}$$

Kinematical event reconstruction to identify the tt candidates + the adittional jet candidate with pT> 50 GeV

Correction to parton level

The cross section needs to be compared to theoretical calculations

in this case, to tt+1jet NLO+PS calculations at parton level

- > Unfolding procedure based on the inversion and regularization of the matrix that describes the migrations between parton and detector level events.*
 - Correct for acceptance and reconstruction efficiency and detector and hadronization effects.
 - The method is no MC mass dependent

Choice of the bin size to optimize the sensitivity → efficiency in the diagonal >50%

Irles, A. | Physics at Terascale | 18th November 2015 Page 16

Comparison with NLO+PS calculations >

$$\chi^2 = \sum_{ij} (\mathcal{R}_i^{\text{cor-data}} - \mathcal{R}_i^{\text{theory}}(m_t^{\text{pole}})) V_{ij}^{-1} (\mathcal{R}_j^{\text{cor-data}} - \mathcal{R}_j^{\text{theory}}(m_t^{\text{pole}})),$$

Where V is the covariance matrix derived during the unfolding

Uncertainties

- > The uncertainties are separated in three categories.
 - Statistical uncertainties: is the dominant due to limited number of events in the data sample

> 1.50 GeV

- Experimental systematic uncertainties, associated to detector, background and signal mismodellings
 - > 0.94 GeV due to Jet Energy scale calibration
 - > 0.72 GeV associated to ISR/FSR modelling
- Theoretical systematic uncertainties: basically scale variations to estimate the uncertainties due to uncalculated higher orders in the perturbative calculation

Description	Value	%
	[GeV]	
m_t^{pole}	173.71	
Statistical uncertainty	1.50	0.9
Scale variations	(+0.93, -0.44)	(+0.5, -0.3)
Proton PDF (theory) and α_s	0.21	0.1
Total theory systematic uncertainty	(+0.95, -0.49)	(+0.5, -0.3)
Jet energy scale (including <i>b</i> -jet energy scale)	0.94	0.5
Jet energy resolution	0.02	< 0.1
Jet reconstruction efficiency	0.05	< 0.1
b-tagging efficiency and mistag rate	0.17	0.1
Lepton uncertainties	0.07	< 0.1
Missing transverse momentum	0.02	0.1
MC statistics	0.13	< 0.1
Signal MC generator	0.28	0.2
Hadronization	0.33	0.2
ISR/FSR	0.72	0.4
Colour reconnection	0.14	< 0.1
Underlying event	0.25	0.1
Proton PDF (experimental)	0.54	0.3
Background	0.20	0.1
Total experimental systematic uncertainty	1.44	0.8
Total uncertainty	(+2.29, -2.14)	(+1.3, -1.2)

> 0.95 GeV

ρ_s interval	R	Stat. Unc. (%)	Syst. Unc. (%)
0 to 0.25	0.126	12.8	7.1
0.25 to 0.325	1.122	6.6	4.5
0.325 to 0.425	2.049	5.0	3.5
0.425 to 0.525	2.622	4.6	2.1
0.525 to 0.675	2.125	4.1	3.1
0.675 to 1.0	0.302	8.2	8.1

Table 4: Measured values of the R-distribution and their experimental uncertainties in percent. The statistical uncertainties are derived from the covariance matrix of eq. 9.

Page 18

Table 3: Value of the inferred top-quark pole mass and breakdown of their associated uncertainties.

Best top quark pole mass determintation to date

 $m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theory) GeV.}$

Page 19

Irles, A. | Physics at Terascale | 18th November 2015

Prospects of the method

- > This is the first time that this method is applied to real data !!
 - Room for better understanding of (lower?) experimental systematic uncertainties
- > The precision is limited (in the presented measurement) by the statistical uncertainty
 - Going to 8 TeV (without any other improvement in selection and reconstruction) the number of events is multiplied by ~ 5
- > But more statistics might also means more sensitivity
 - More statistics may allow bin size reduction \rightarrow increase of sens.

- > Top quark mass measurements with high precision and a clear theoretical interpretation are crucial for top quark & EW physics understanding.
- Differential cross sections show great potential for this prospects: specifically the differential tt+1 jet cross section
 - Sensitive method, with small theoretical uncertainties and a well defined mass scheme.
- First public result presented with this method (by ATLAS) is the best top-quark pole mass measurement to date.
- Future prospects: room for improvement and reduction of statistical and systematic uncertainties

Quark masses (introduction)

- > Masses are parameters in the Lagrangian \rightarrow normalized quantities (i.e. α_{s})
 - Running mass scheme vs pole mass scheme ("stable particles" in event by event MC)

Renormalon, pole mass has an intrinsic ambiguity of the order of Λ_{occ}

Running mass definition provides better perturbative stability (tt)

Langenfeld, Moch, Uwer PRD 80, 054009 (2009) Czakon, Fiedler, Mitov hep-ph/1303.6254

Page 23

> Physics is independent of the renormalization choice

$$m_{pole} = \overline{m}(\overline{m}) \left(1 + \frac{4}{3} \frac{\overline{\alpha}_s(\overline{m})}{\pi} + 8.28 \left(\frac{\overline{\alpha}_s(\overline{m})}{\pi} \right)^2 + \cdots \right) + O(\Lambda_{\text{QCD}})$$

Measuring the top quark mass from inclusive cross sections

- > Observable to measure and calculate: the tt inclusive cross section.
 - MC simulations are used to correct for detector acceptance and reconstruction efficiency estimation.
 - "Limited" theoretical sensitivity:

 $\Delta \sigma_{\text{H}} / \sigma_{\text{H}} \approx -5 \Delta m_{\text{H}} / m_{\text{H}}$

Limited precision?

Unfolding procedure in two steps

The first step: Regularization matrix inversion to unfold to the $t\bar{t}$ +1jet system where the $t\bar{t}$ is defined at parton level and the jet is associated to the first powheg emission.

Second step \rightarrow Small correction factor that introduces ~1% correction in the mass.

 $t\bar{t} + 1$ -jet (detector level) $\rightarrow t\bar{t} + g$ (parton level) $\rightarrow t\bar{t} + 1$ -jet (parton level),

$$\mathcal{R}^{\text{cor-data}}(\rho_s) \equiv \left[\left(\mathcal{M}^{-1} \otimes \mathcal{R}^{\text{det-data}}(\rho_s) \right) \cdot \left(\frac{\mathcal{R}_{\text{acc.}}^{t\bar{t}+g}(\rho_s)}{\mathcal{R}^{t\bar{t}+g}(\rho_s)} \right)^{-1} \right] \cdot \left(\frac{\mathcal{R}^{t\bar{t}+1-\text{jet}}(\rho_s)}{\mathcal{R}^{t\bar{t}+g}(\rho_s)} \right),$$

Irles, A. | Physics at Terascale | 18th November 2015 Page 25

