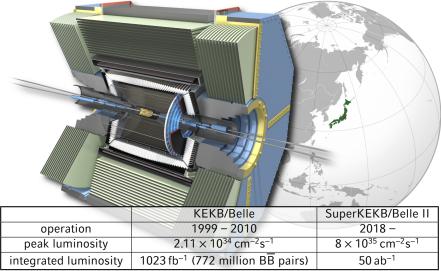


Belle II Computing

Martin Ritter for the Belle II Collaboration

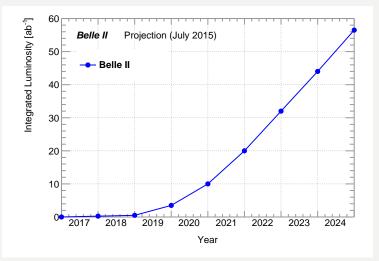

Annual Terascale Alliance Workshop, November 18, 2015

Asymmetric e^+e^- experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)

Time of Propagation counter DIRC with 20 mm quartz bars MCP-PMT readout

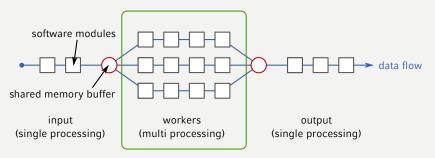
1000

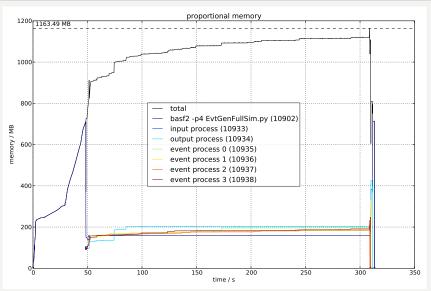
Electromagnetic Calorimeter 8000 Csl Crystals, 16 X₀ PMT/APD readout


Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector 4 layer double sided strips 20 – 50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel


- beamline completed
- commissioning will start next year
- first data with full detector in 2018



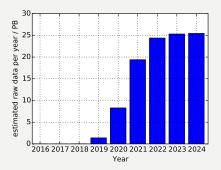
Mainly written from scratch using experiences from Belle and other experiments

- modular approach
- ▶ utilize new technologies: C++11 (gcc 5.2), ROOT 6, Geant 4.10, Python 3.5
- python as steering/scripting language
- ROOT for input/output (also raw data)
- parallel processing support using fork

- static memory pages shared between processes
- no need for locking, no race conditions
- communication between processes limited

Current Performance

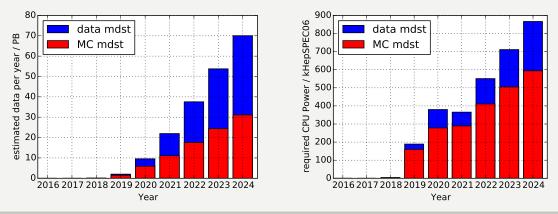
LUDWIG-MAXIMILIANS UNIVERSITÄT


MÜNCHEN

- raw data ~ 300 kB per event
- simulation & reconstruction ~ 90 HepSPEC06/s per event
- reconstructed data (mdst) ~ 40 kB per event

estimation of required disk space/processing power from luminosity projection

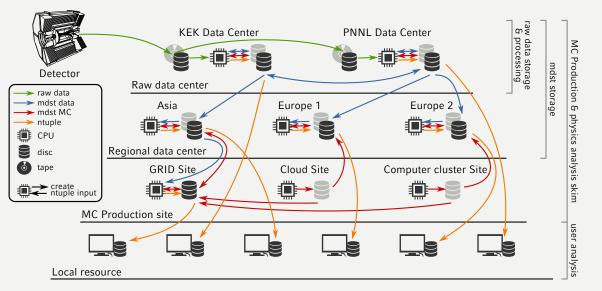
- by 2024, total number of events 3.75×10^{11} events
- ► ~ 100 PB raw data, ~ 25 PB/year with full luminosity
- ▶ plan to keep 2 copies, one at KEK, one distributed


process	cross section
BB w.d.o.o.noir	~ 1 nb
u, d, s, c pair τ	~ 3 nb ~ 1 nb
background	~ 2.5 nb

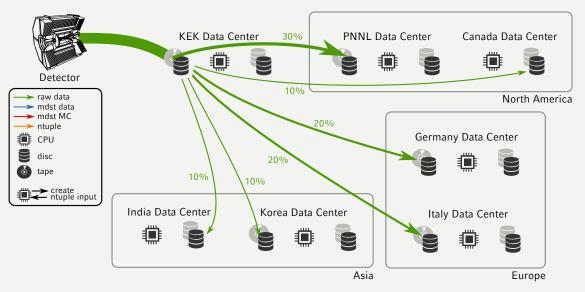
LUDWIG-MAXIMILAINS-UNIVERSITÄT MÜNCHEN

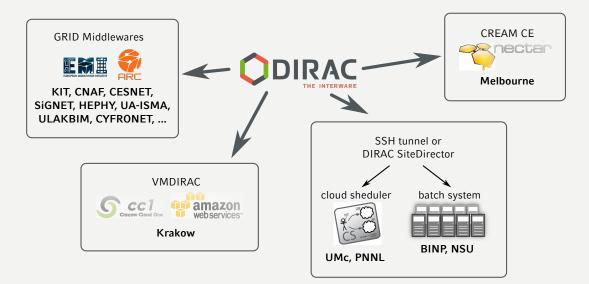
Reconstructed data is factor 10 smaller

- needs to be replicated for different regions (Asia, Europe, North America)
- keep two versions (reprocessing)
- MC: data × 4 till 2019, reduce to data × 1
- reprocessing: assume data has to be reprocessed
 (4 times / year in the beginning, once per two years after 2020)

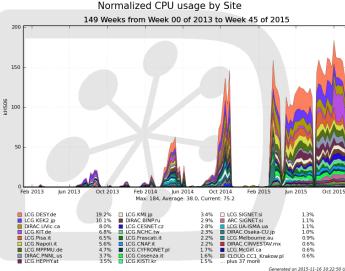


Martin Ritter for the Belle II Collaboration





MAXIMILIANS-UNIVERSITÄT MC PRODUCTION CHALLENGES MÜNCHEN


Belle II started first MC Production run in 2013

this year first run with automated production system

LUDWIG-

- target: 2 PB in 200 days
- $\blacktriangleright \sim 50$ sites from 17 countries
- around 2 PB reserved storage
- ► average of ~ 150 kHS
- very strong German contribution: 31 %:
 - DESY 19 %
 - KIT 9 %
 - MPP/RZG 3 %

ongoing investigations into network

	2019 Inbound Network bandwidth requirement (c.f. slide 3)		2015 Data Challenge Result	Comment
KEK → PNNL	5 Gbps	8 Gbps	~ 4 Gbps Spikes at 9 Gbps	Result from gsiftp:// Network tuning required
KEK → SIGNET	0.4 Gbps	0.6 Gbps	0.8 Gbps (high success rate) 2.4 Gbps (low success rate)	
KEK → NAPOLI	1.2 Gbps / 2*	4.5 Gbps / 2*	3 Gbps	3 Gbps with appropriate load. Higher bandwidths may be possible
КЕК → КІТ	1.5 Gbps / 2*	4.5 Gbps / 2*	3.5 Gbps	
KEK → DESY	1.5 Gbps / 2*	4.5 Gbps / 2*	3.0 Gbps	
	 equal site splitting in country 			

Belle II will start physics in 2018

- ▶ target: 50 ab⁻¹ till 2024
- 25 PB raw data per year with full luminosity
- expected total of roughly 300 TB of data (raw, mdst, MC)
- user analysis not included here

Computing System

- hierarchical structure similar to LHC experiments
- heterogeneous system using Grid, Cloud, Clusters
- using DIRAC

Current MC Production Challenge

- started first tests in 2013
- ongoing campaign with around 50 grid sites (150 kHS avg.)

Thank you for your attention

