Theory of Heavy Quarkonium Production

Mathias Butenschön (Hamburg University)

Production and Decay Rates of Heavy Quarkonia

Heavy Quarkonia: Bound states of heavy quark and antiquark.

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color singlet (=color neutral) state. In case of J/ψ: cc̄[³S₁^[1]]
- Multiply by quarkonium wave function at origin
- Leftover IR singularities in case of *P* wave quarkonia
- Mid 90's: Strong disagreement with Tevatron data apparent

Nonrelativistic QCD (NRQCD):

- Rigorous effective field theory: Bodwin, Braaten, Lepage (1995)
- Based on factorization of soft and hard scales (Scale hierarchy: $Mv^2 << Mv \approx \Lambda_{QCD} << M$)
- Large part of talk: Is NRQCD factorization compatible with data?

Further approaches: k_{τ} factorization, Color Evaporation Model

Quarkonium Production with NRQCD (e.g. J/ψ)

Factorization theorem:
$$\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$$

- *n*: Every possible Fock state, including color-octet (CO) states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD.
- $\langle O^{J/\psi}[n] \rangle$: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, supposedly universal, nonperturbative.

Scaling rules: LDMEs scale with definite power of v ($v^2 \approx 0.2$):

scaling	<i>V</i> ³	v ⁷ ("CO states")	<i>V</i> ¹¹
n	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	

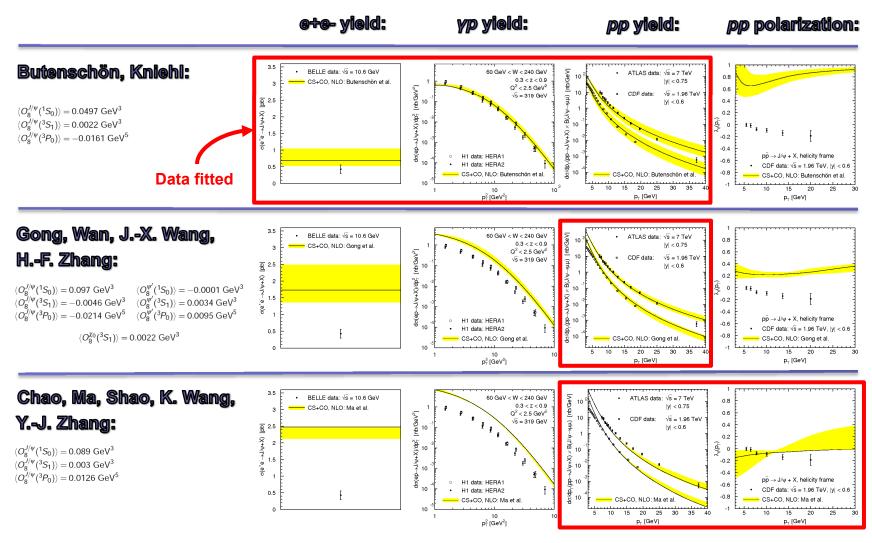
Double expansion in v and a_s

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.

Test NRQCD factorization at NLO

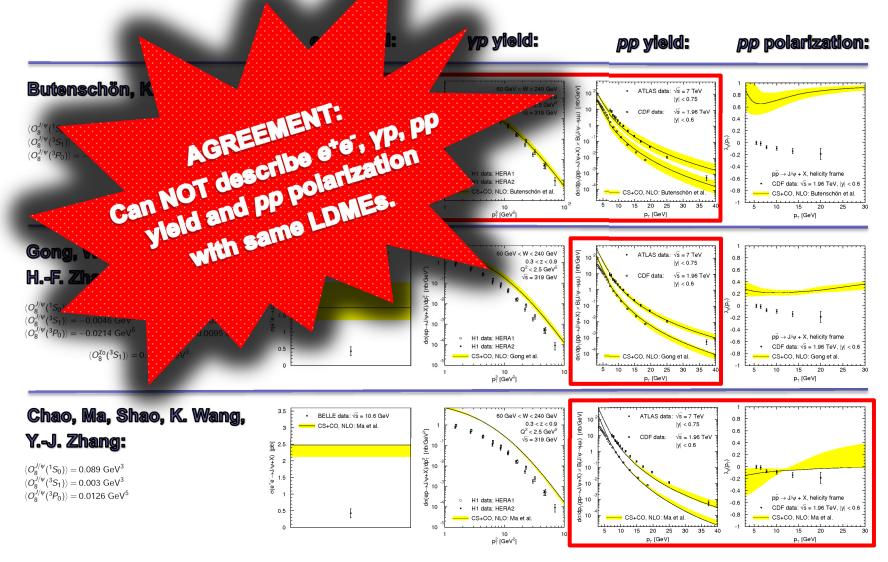
What we have:

Short distance coefficients σ_{QQ[n]}: Three different groups/codes for inclusive NLO QQ[n] production via Color Singlet + Color Octet states (Summary of publications, mostly since 2009):


- □ **M.B., He, Mihaila, Klasen, Kniehl, Steinhauser:** J/ψ , $\psi(2S)$, η_c , h_c in $\gamma\gamma$, e^+e^- , γp , pp, including relativistic corrections.
- □ Chao, Han, Ma, Meng, Shao, K. Wang, Y.-J. Zhang: J/ψ , $\psi(2S)$, χ_{cJ} , η_c , h_c , Y(nS), χ_{bJ} in e^+e^- , pp.
- □ Li, Gong, Sang, Sun, Wan, J.-X. Wang, H.-F. Zhang: J/ψ , $\psi(2S)$, χ_{cJ} , η_c , h_c , Y(nS), χ_{bJ} in pp.

■ Color Singlet (CS) production LDMEs: Related to decay CS LDMEs ⇒ Extracted from decays like $J/\psi \rightarrow \mu^+\mu^-$ (or from potential model calculation).

What we have to fit:


Color Octet (CO) LDMEs (no lattice calculation yet).

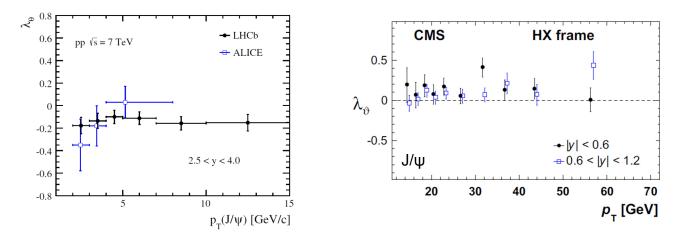
J/ψ Production Fits until 2013:

Theory of Quarkonium Production

J/ψ Production Fits until 2013:

M. Butenschön

Theory of Quarkonium Production

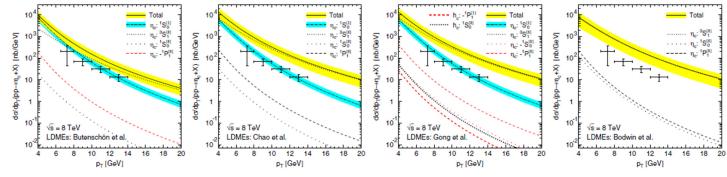

Ways Out (1): Is J/ψ really unpolarized?

One option discussed:

- Maybe CDF data (unpolarized J/ψ : $\lambda_{\theta} \approx 0$) cannot be trusted. (Disagreement between Tevatron Run I and Run II data)
- **Strong transverse polarization** ($\lambda_{\theta} \approx +1$) would solve the problem!

BUT:

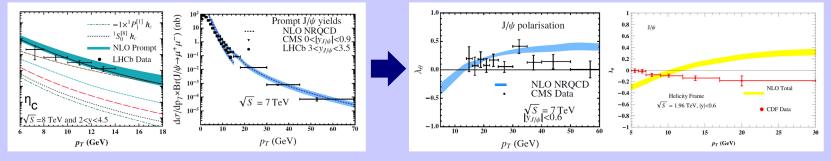
In 2013: ALICE, LHCb and CMS have all succeeded in difficult polarization measurements and found no significant transverse polarization either:



Ways Out (2): Is NRQCD valid only at high- p_T ?

Another option: Maybe NRQCD holds only at $p_T > 9$ GeV. (Idea: Factorization breaking terms in non-fragmentation-like contributions?) At $p_T > 9$ GeV only *pp* data was available \longrightarrow No disagreement with data.

BUT:


- In 2015 it was explicitly shown that there are no factorization breaking terms at any perturbative order. [Nayak (2015)]
- In 2014 LHCb measured η_c production rate. η_c and J/ψ LDMEs are related via Heavy quark spin symmetry of the NRQCD Lagrangian:

None of the J/ψ CO LDME sets on the market describes η_c data, even though p_T > 9 GeV. [M.B., He, Kniehl (2014)]

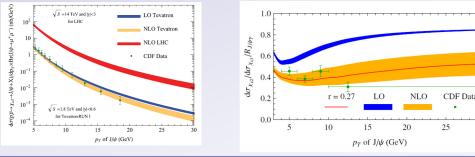
Possible Other Ways Out

Carry on with only *pp* data anyway, but new fits including η_c:
 □ Han, Ma, Meng, Shao, Chao (2014):

□ Or: Accept lower CS LDME to get agreement [Zhang, Sun, Sang, Li (2014)] → Increasing tensions even with high- $p_T pp$ data only.

Other ways out:

- Maybe v expansion converges too slowly (need more intermediate states).
- A wider range of parameters (scales and heavy quark mass) might help.
- Resummation of m⁴/p_T⁴ log(p_T/m) terms via Double Parton Fragmentation Functions (FFs) could improve usual FF results (RGEs need to be solved). [Kang, Qiu, Sterman (2012); Fleming, Leibovich, Mehen, Rothstein (2012)]


Ypsilon and $\chi_{c,J}$ Production with NRQCD

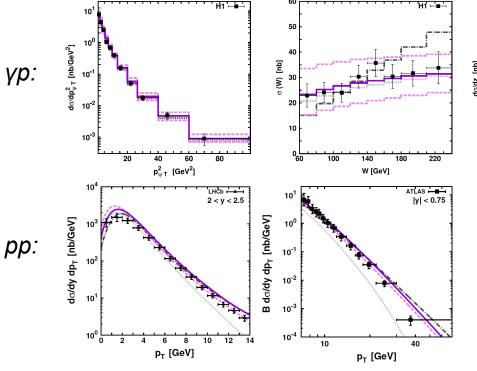
Bottomonia Y(1S), Y(2S), Y(3S) production:

 Only pp data: More than enough free parameters to easily describe production yield and polarization (Not yet a "test" on NRQCD factorization). [Gong, Wang, Wan, Zhang (2013)]

χ_{cJ} production:

- NRQCD Velocity Scaling: Leading LDMEs are $\langle O\chi_{cJ}({}^{3}P_{J}{}^{[1]}) \rangle$, $\langle O\chi_{cJ}({}^{3}S_{1}{}^{[8]}) \rangle$. → Only one free fit parameter $\langle O\chi_{c0}({}^{3}S_{1}{}^{[8]}) \rangle$.
- Nontrivial outcome: Both χ_{cJ} yield and χ_{c2}/χ_{c1} ratio in *pp* collisions can simultaneously be described: [Ma, Wang, Chao (2010)]

30

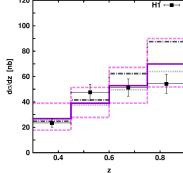

k_T Factorization Approach

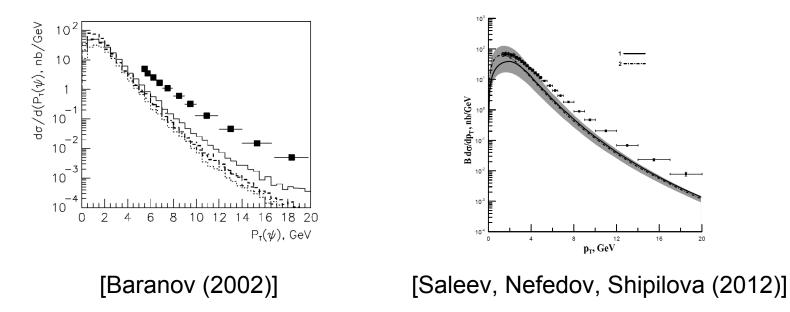
Apply k_{τ} factorization to quarkonium production:

- Idea: Scales of quarkonium production much smaller than collision energy: $p_T, m_c \ll \sqrt{s}$
 - Longitudinal parton momentum fractions x small, transverse parton momenta k_{τ} should not be neglected.
- Use off shell matrix elements with k_T dependence entering via $\varepsilon^{\mu}(k_T) = k_T^{\mu}/|\vec{k_T}|$.
- Usually just LO matrix elements used.
- Fold with k_{τ} dependent, **unintegrated PDFs**.
- Various prescriptions for deriving uPDFs from usual PDFs in DGLAP, BFKL or "CCFM" approach.
- Monte Carlo program **CASCADE** simulates initial state gluon radiation within k_T factorization framework [Jung, Salam (2001)].

k_T Factorization Approach: Results (1)

Baranov, Lipatov, Zotov (2011); Baranov, Lipatov, Zotov (2012):
 Color Singlet Model predictions for various uPDFs:




TABLE I. The polarization parameters of prompt J/ψ mesons calculated in the kinematical region of CMS and ATLAS measurements [27,28]. The CCFM A0 gluon density is used.

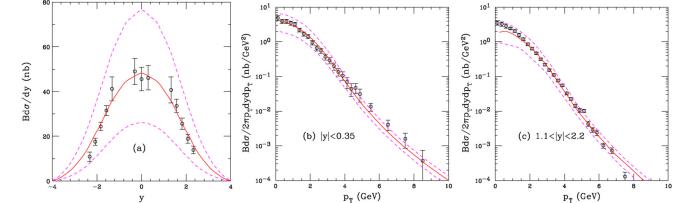
Source	λ_{θ} (HX)	λ_{ϕ} (HX).	$\lambda_{\theta\phi}$ (HX	λ_{θ} (CS)	λ_{ϕ} (CS).	$\lambda_{\theta\phi}$ (CS)
Direct	-0.15	-0.09	0.01	0.20	-0.22	-0.01
Feed-down	0.19	0.14	0.00	0.35	0.09	0.00
Total	-0.07	-0.03	0.01	0.24	-0.14	-0.01

No room and no need for color octet contributions.

k_T Factorization Approach: Results (2)

But: Other calculations come to different conclusions: (for hadroproduction)

- Effect of k_T much smaller, color singlet still not enough.
- In these works: Fits of CO LDMEs within k_T factorization framework.
 Maybe using k_T factorization LDMEs can be shown to be universal.


Color Evaporation Model

Fritsch (1977); Halzen (1977); Glück, Owens, Reya (1978):

$$\sigma = F_H \int_{(2m_c)^2}^{(2m_D)^2} dm^2 \frac{d\sigma_{c\overline{c}}}{dm_{c\overline{c}}^2}$$

- Consider open $c+\overline{c}$ production, regardless of $c+\overline{c}$ color, spin, momenta.
- Integrate over invariant c+c mass up to formation of next heavier meson pair.
- **F**_H: Number describing formation of quarkonium H by color "evaporation".
- Qualitative picture rather than rigorous theory.

CEM predictions for RHIC data [Nelson, Voigt, Frawley (2013)]:

Summary

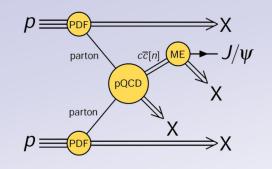
 40 years after J/ψ discovery: Mechanism behind heavy quarkonium production still not clear.

Traditional color singlet model:

- □ Can successfully describe **only** e⁺e⁻ data.
- □ Theoretically **incomplete** due to uncancelled IR divergences.

NRQCD factorization:

- □ **Rigorous theorem** based on a solid effective field theory.
- But: Current analyses of experimental data cast doubt on the universality (process-independence) of the LDMEs.

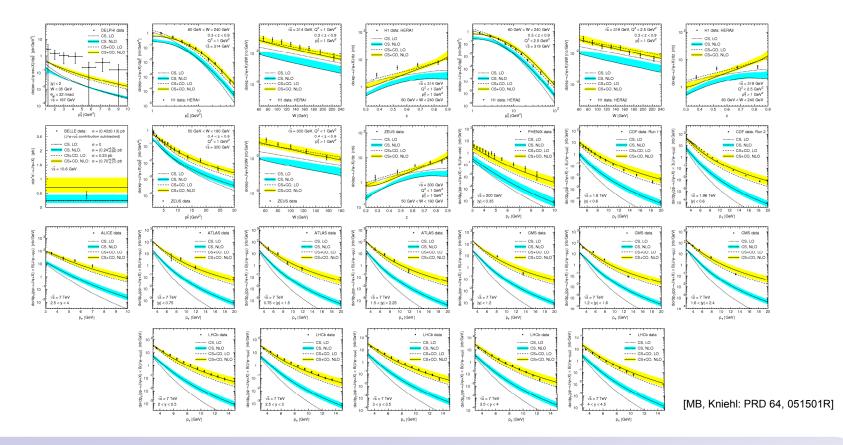

Possible ways out today:

- □ Maybe *v* expansion does simply not converge well (at least for charmonia).
- □ Maybe resummation of **large logarithms** p_T/m_c in region of small and/or large transverse momenta is necessary (e.g. NLP formula with double parton FFs).
- □ Application of k_{τ} dependent PDFs.

BACKUP SLIDES

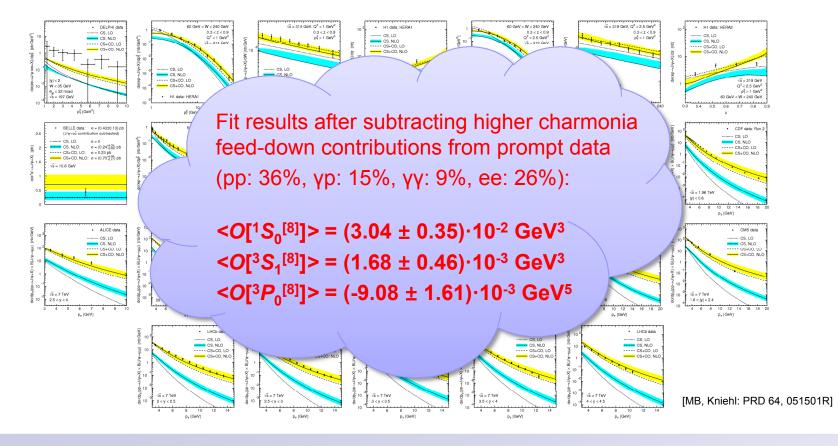
Calculate Inclusive J/ ψ Production within NRQCD

Factorization formulas (here hadroproduction):

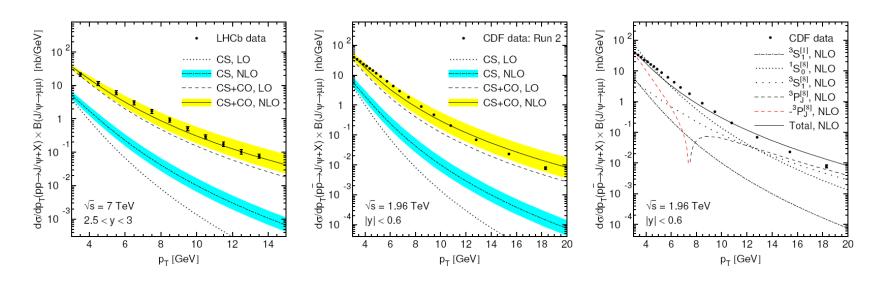

Convolute partonic cross section with proton PDFs: $\sigma_{hadr} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) f_{j/p}(y) \cdot \sigma_{part,i,j}$ NRQCD factorization: $\sigma_{part,i,j} = \sum_{n} \sigma(ij \rightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\Psi}[n] \rangle$

Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

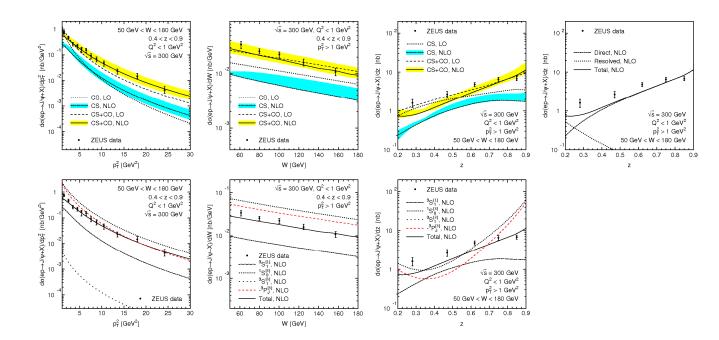
$$A_{c\overline{c}[{}^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha}(m_{s})\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$
$$A_{c\overline{c}[{}^{3}P_{l}^{[8]}]} = \varepsilon_{\alpha}(m_{s})\varepsilon_{\beta}(m_{l})\frac{d}{dq_{\beta}}\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$


- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- **q**: Relative momentum between *c* and *c*. *ε*: Polarization vectors.

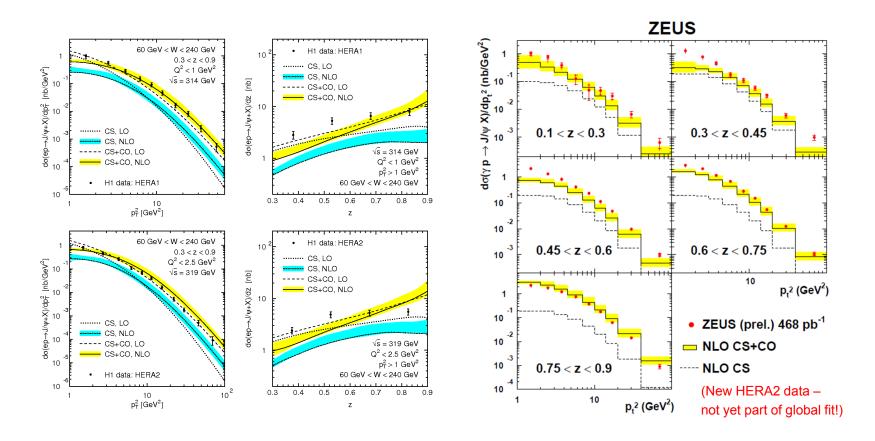
Global Fit to Unpolarized Data


 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

Global Fit to Unpolarized Data


 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

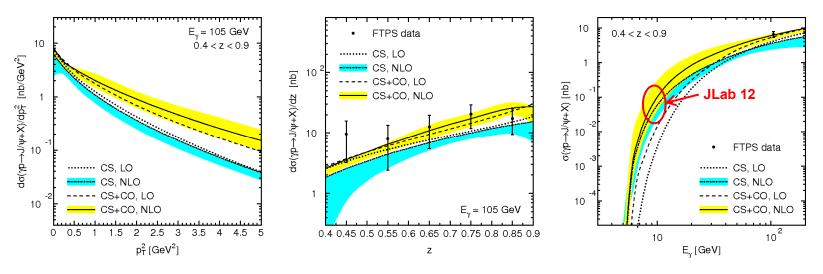
In Detail: Hadroproduction (LHC, Tevatron)


- Color singlet model far below data. CS+CO describes data well.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at $p_{T} > 7$ GeV.
- But: Short distance cross sections and LDMEs unphysical
 No problem!
- Hadroproduction data below p_T = 3 GeV excluded from our fit.
- Observation: Change s or rapidity y just rescaling of cross sections: CO LDMEs describing RHIC or Tevatron must also describe LHC!

In Detail: Photoproduction at HERA

- **Distributions:** Transverse momentum (p_T), photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone **below** the data, **CS+CO** describes data well.
- Calculation includes resolved photon contributions: Important at low z.
- Good description at high z: No increase like in older Born analyses!

In Detail: More Photoproduction

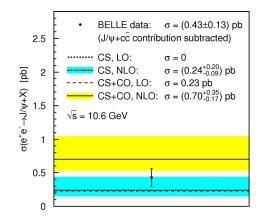


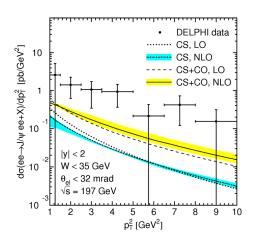
Again: CS alone **below** data; **CS+CO** good description, especially at high *z*.

H1 HERA2 data systematically below H1 HERA1 and ZEUS HERA1 + 2.

Low-energy inelastic J/ψ photoproduction

- **FTPS experiment** at Fermilab ('80s): 105 GeV photons on hydrogen target.
- Measured **inelastic** J/ψ production ($z = E_{J/\psi} / E_{\gamma} < 0.9$) NRQCD yields good description even at this low-energy range:




- Planned JLab near-threshold measurements: 12 GeV electrons on nuclei.
- Total inelastic cross section: ~ 10⁻² nb. Measureable? (does of course increase with other nuclei than hydrogen)
- Close to threshold: Bad perturbative stability of parton model.

In Detail: e^+e^- and $\gamma\gamma$ Collisions

Electron-Positron Collisions at BELLE:

- **CS:** Large overlap with data, **CS+CO:** Small overlap.
- But: Only 4+ charged track events measured.
 Actual BELLE data larger by unknown factor.
- For e⁺e⁻ color singlet, NNLO terms been calculated, increasing cross section. Not part of the global fit. [Ma, Zhang, Chao (2009); Gong, Wang (2009)]

Two Photon scattering at DELPHI (LEP):

- Includes direct, single and double resolved photons.
 - CS below data, but also **CS+CO** curve **too low**. Possible explanations:
 - Uncertainties in the measurement (Just 16 events involved!)
 - □ Hint at problems with LDME universality.

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_T cut:

	<i>p</i> ₇ >1 GeV	<i>p</i> ₇ > 2 GeV	<i>p</i> ₇ > 3 GeV	<i>p</i> ₇ > 5 GeV	<i>p</i> ₇ > 7 GeV
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
<i>M</i> ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

- Fit underconstrained. Therefore give two linear combinations of Ma *et al.*: $M_0 = \langle O({}^{1}S_0^{[8]}) \rangle + 3.9 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O({}^{3}S_1^{[8]}) \rangle - 0.56 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2$
- Fit results **depend strongly** on low- p_T cut.

Agreement with Ma *et al.*'s fit to Tevatron run II data with p_{τ} > 7 GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	<i>M</i> ₀ = (7.4 ± 1.9) 10 ⁻² GeV ³	<i>M</i> ₁ = (0.5 ± 0.2) 10 ⁻³ GeV ³
Ignore feed-downs, directly fit <i>M</i> ₀ and <i>M</i> ₁ :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \mathrm{GeV^3}$	<i>M</i> ₁ = (1.26 ± 0.23) 10 ⁻³ GeV ³
Ignore feed-downs, <i>M</i> ₀ and <i>M</i> ₁ from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \mathrm{GeV^3}$	<i>M</i> ₁ = (1.67 ± 1.05) 10 ⁻³ GeV ³
[Ma, Wang, Chao:	Table 1 of PRL 106, 042002 and I	Equation (18) of PRD 84, 114001

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_T cut:

$< O[{}^{3}S_{1}{}^{[8]}] > [10^{-3} \text{ GeV}^{3}]$ $< O[{}^{3}P_{0}{}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-2.66 ± 0.69 -3.63 ± 0.23	-13.36 ± 1.60 -7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
<i>M</i> ₀ [10 ⁻² GeV³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
<i>M</i> ₁ [10 ⁻³ GeV³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

- Fit underconstrained. Therefore give two linear combinations of Ma *et al.*: $M_0 = \langle O({}^{1}S_0^{[8]}) \rangle + 3.9 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O({}^{3}S_1^{[8]}) \rangle - 0.56 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2$
- Fit results **depend strongly** on low- p_T cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	<i>M</i> ₀ = (7.4 ± 1.9) 10 ⁻² GeV ³	<i>M</i> ₁ = (0.5 ± 0.2) 10 ⁻³ GeV ³			
Ignore feed-downs, directly fit <i>M</i> ₀ and <i>M</i> ₁ :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \mathrm{GeV^3}$	<i>M</i> ₁ = (1.26 ± 0.23) 10 ⁻³ GeV ³			
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	<i>M</i> ₀ = (8.54 ± 1.02) 10 ⁻² GeV ³	<i>M</i> ₁ = (1.67 ± 1.05) 10 ⁻³ GeV ³			
[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 11400					

Global Fit: Dependence on Low- p_T Cuts (1)

Global fit: Vary low- p_T cut on hadroproduction data:

hadroproduction data left	р₇>1 GeV 148 points	<i>p_T</i> > 2 GeV 134 points	<pre>p_T > 3 GeV 119 points</pre>	<i>p_T</i> > 5 GeV 86 points	<pre>p_T > 7 GeV 60 points</pre>
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23
<i>M</i> ₀ [10 ⁻² GeV ³]	1.81 ± 0.09	1.85 ± 0.09	2.18 ± 0.10	2.17 ± 0.12	1.89 ± 0.12
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.46 ± 0.17	6.37 ± 0.17	6.25 ± 0.17	6.18 ± 0.17	5.86 ± 0.18
			1		
			Our default fit		

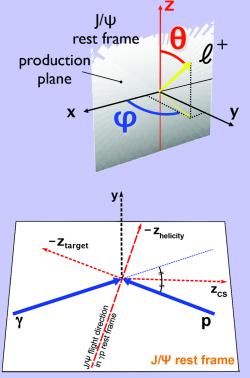
- **Stabilizing** influence of **photoproduction** data.
- Fit **constrained** enough: Can now extract 3 CO LDMEs.
- Fit results now **almost independent** of low- p_T cut.
- Fit less stable with low- p_T cut below 2 GeV (nonperturbative effects).

Global Fit: Dependence on Low- p_T Cuts (2)

Global fit: Vary low- p_T cut on photoproduction (including $\gamma\gamma$ -scattering):

photoproduction data left	p _T > 1 GeV 74 points	p ₇ > 2 GeV 30 points	p ₇ > 3 GeV 15 points	<i>p</i> ₇ > 5 GeV 5 points	<i>p</i> ₇ > 7 GeV 1 point
<o[<sup>1S₀^[8]]> [10⁻² GeV³]</o[<sup>	4.97 ± 0.44	5.10 ± 0.92	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
<o[<sup>3P₀^[8]]> [10⁻² GeV⁵]</o[<sup>	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83
<i>M</i> ₀ [10 ⁻² GeV ³]	2.18 ± 0.10	2.36 ± 0.12	2.37 ± 0.13	2.62 ± 0.15	3.10 ± 0.19
<i>M</i> ₁ [10 ⁻³ GeV ³]	6.25 ± 0.17	6.05 ± 0.18	5.94 ± 0.19	5.78 ± 0.20	5.62 ± 0.20
	1				
	Our default fit				

- **Fit stable** against varying low- p_T cut in region 1 GeV ~ 3 GeV.
- Just 5 or 1 photoproduction against 119 hadroproduction points not enough to stabilize the fit. Not stable with low- p_T cut much larger than 3 GeV. (Would need more high- p_T photoproduction data.)


J/ψ Polarization

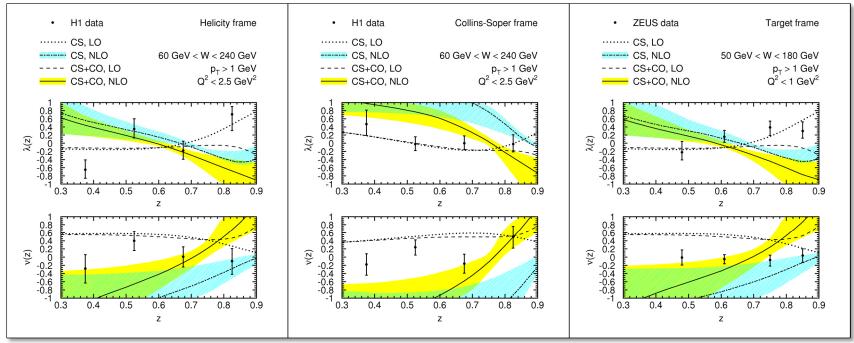
Angular distribution of decay lepton *I*⁺ in *J/ψ* rest frame
 Polarization observables λ, μ, ν:

 $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{v}{2} \sin^2\theta \cos(2\phi)$

- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_{p})$
 - **Collins-Soper frame**: $z \text{ axis } \| \vec{p}_{\gamma} / |\vec{p}_{\gamma}| \vec{p}_{p} / |\vec{p}_{p}|$
 - **Target frame:** $z \operatorname{axis} \| \vec{p}_p$
- In Calculation: Plug in explicit expressions for cc[n] spin polarization vectors according to

 $\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2}\operatorname{Re} d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$

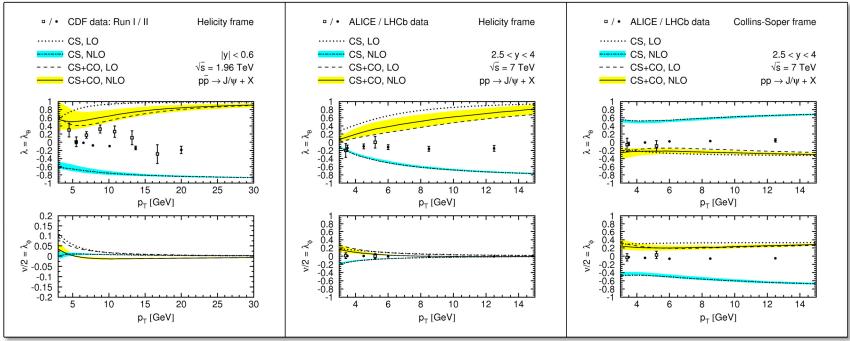
We use the CO LDME set with feed-down contributions subtracted.


J/ψ Polarization in Photoproduction: p_T Distribution

[[]MB, Kniehl: PRL 107, 232001]

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization in Photoproduction: z Distribution

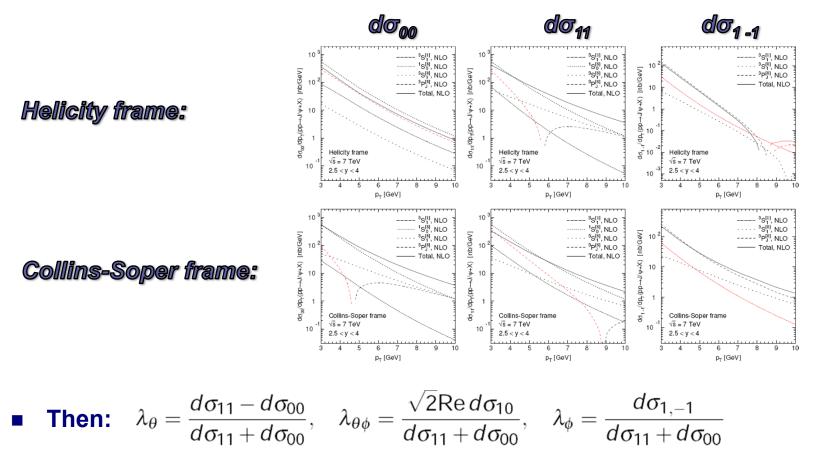


[[]MB, Kniehl: PRL 107, 232001]

- Bands: Uncertainties due to scale variation and CO LDMEs.
- Scale uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.

 ρ_{T} distribution better suited to discriminate production mechanisms than z.

J/ψ Polarization in Hadroproduction



[[]MB, Kniehl: PRL 108, 172002]

- Helicity frame: NRQCD predicts strong transverse polarization at high p_T.
- Collins-Soper frame: NRQCD predicts slightly longitudinal J/ψ .
- Disagreement with CDF Run II data, and with new ALICE and LHCb data.
 Challenge to LDME universality!

Polarization in Hadroproduction: Contributions

First: Sum up contributions of intermediate states:

Theory of Quarkonium Production