Hadron Production in Photon-Photon Processes at International Linear Collider

9th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

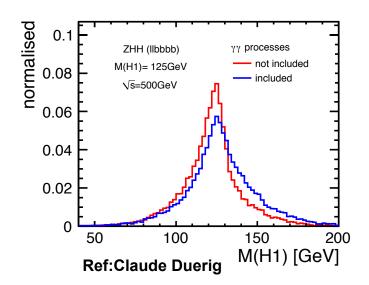
Swathi Sasikumar DESY, 17-19th Nov 2015

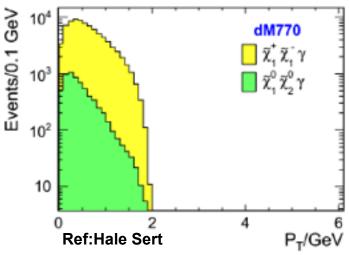
- Introduction
- Total Cross Sections
- Event Properties
- ▶ Towards an improved description
- Summary and Outlook

- Introduction
- ▶ Total Cross Sections
- Event Properties
- ▶ Towards an improved description
- Summary and Outlook

Introduction

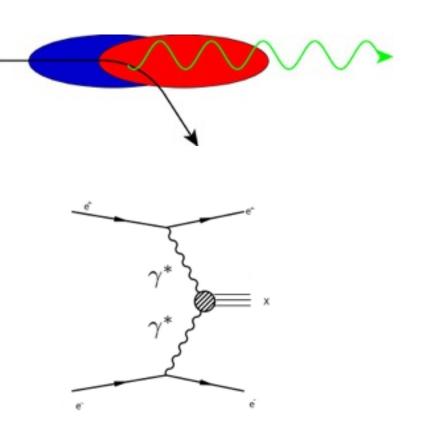
- The DBD simulations:
 - $\gamma\gamma$ backgrounds a challenge
 - overlaid number of events on each physics event
 - $\gamma\gamma$ => low p_T hadron event generation by T.Barklow
- > Remove $\gamma \gamma$ backgrounds by applied k_T algorithm methods
- > In 95 % of the cases k_T algorithm a success in regaining physics performance
- > Few important cases still an exception to k_T algorithm method


Impact of Hadron Overlay


- Hadron Pile up reduce precision for a few specific but important cases.
- Higgs self-coupling measurements which are very rare processes
- Signals for new particles with small mass differences (dark matter candidates)
- They are low p_T particles moving in forward direction
- Much similar to $\gamma\gamma$ backgrounds

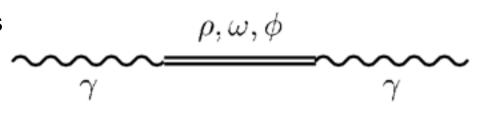
Need more differential methods to remove gamma-gamma background

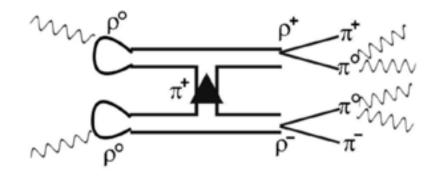
 Identify gamma-gamma collision products by explicit reconstruction


Very important to have detailed simulation

Photons in an eter Collider

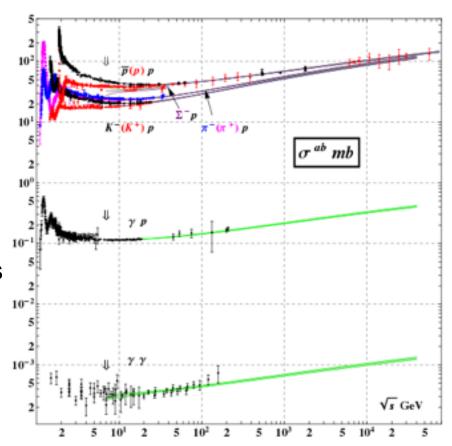
- e⁺ e⁻ beams are accompanied by :
- Real photons f_r(x):
 - Beamstrahlung emission of real photons in high electrical field of oncoming bunch
 - Synchrotron photons are backscattered gaining higher energy
- Virtual Photons f_v(x):
 - Weizsaecker-Williams process emission of virtual photons which can interact with an oncoming photon or an electron
- The spectra entering the $\gamma\gamma$ cross section is contributed from this sources -the photon




$$L_{\gamma\gamma} = f_v(x_1)f_v(x_2) + [f_v(x_1)f_r(x_2) + f_r(x_1)f_v(x_2) + f_r(x_1)f_v(x_2)]$$

Vector Meson Dominance

- Photons interact in different ways
- Vector meson dominance the most dominating subprocess in photon-photon processes
- A photon fluctuates into a vector meson (ρ,ω,φ, j/Ψ, Υ) (same quantum properties)
- The highest probability for the photon to fluctuate is into a Rho meson.
- Production of number of low momentum soft Hadrons.



Hadron Interactions in VMD

- A photon is a hadron a fraction
 1/400 of the time
- Rise in gamma-gamma cross sections much similar to hadronic cross sections
- All event classes known for ordinary hadron-hadron interactions are found to occur here
- Behaves more like a Hadron collider than a lepton collider

Reference: Particle Data Group 2014

- The $\gamma\gamma$ => low pt hadron processes simulated by methods provided by T.Barklow
- Based on a blend of
 - Pythia events at $\sqrt{s_{\gamma\gamma}}$ > 10 GeV
 - Paper by Chen, Barklow and Peskin for 0.3 GeV< $\sqrt{s}_{\gamma\gamma}$ <10GeV
- Integrated into Whizard which provides the $\gamma\gamma$ => Hadron processes

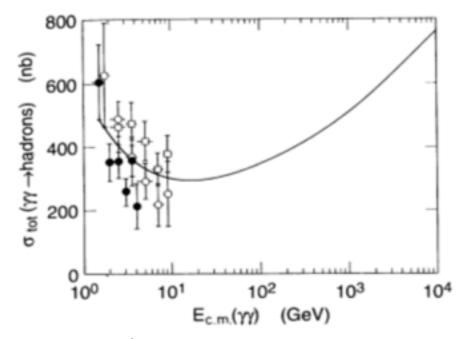
Hadron Production in $\gamma \gamma$ Collisions as a Background for e^+e^- Linear Colliders^{*}

PIBIN CHEN, TIMOTHY L. BARKLOW, AND MICHAEL E. PERKIN

Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

ABSTRACT

Drees and Godbole have proposed that, at the interaction point of an $e^+e^$ linear collider, one expects a high rate of hadron production by $\gamma\gamma$ collisions, providing an additional background to studies in e^+e^- annihilation. Using a simplified model of the $\gamma\gamma$ cross section with soft and jet-like components, we estimate the expected rate of these hadronic events for a variety of realistic machine designs.



- ▶ Introduction
- Total Cross Sections
- Event Properties
- ▶ Towards an improved description
- ▶ Summary and Outlook

Total Cross Sections from Chen, Barklow and Peskin

- Determination of photon-photon hadronic cross sections essential for computing hadronic backgrounds
- Photon-photon total cross section proportional to ρ - ρ total cross section
- The parametrization of Amaldi et al. give cross sections as

$$\sigma(\gamma\gamma - > hadrons) = \sigma_0(1 + (630 * 10^{-3})[ln(s)^{2.1} + (1.96)s^{-0.37})$$

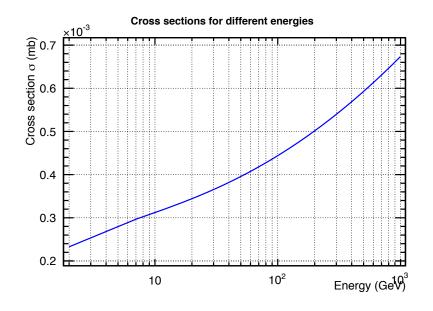
(Ref: Peskin et al, PRD, 49(3209) 1994)

$\gamma\gamma$ - Processes in Pythia 6.4

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a qar q pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

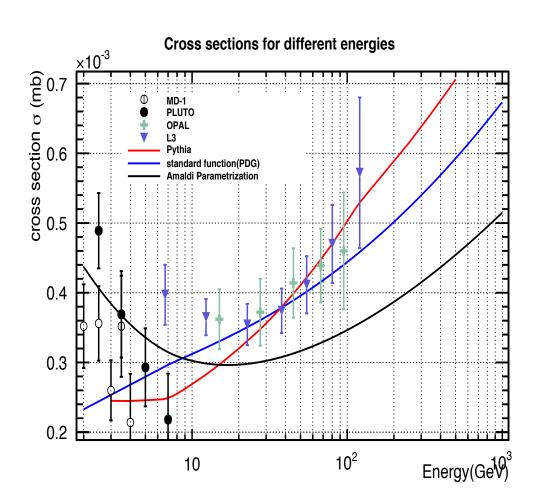
Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

- Usage of Gamma gamma beams with varying energy is preferred more realistic results
- Missing of Deep Inelastic scattering process trying to include by changing some parameters


Update: Total cross section from PDG

• The standard theory for calculating hadronic cross sections as per PDG:

$$\sigma^{\gamma\gamma} = \delta^2 [H \ln^2(\frac{S}{S_M^{\gamma\gamma}}) + P^{\gamma\gamma}] + R_1^{\gamma\gamma} (\frac{S}{S_M^{\gamma\gamma}})^{-\eta_1}$$


- R: Regge term defines the cross section at low energies where the interactions are explained using meson exchange
- P: Pomeronchuk term defines the cross section at higher energies where the interactions are explained using pomeron exchange.
- H: $H=\pi(\frac{\hbar c^2}{M^2})$ The Heisenberg term defines the rise in cross section with energy

(Ref: Particle data group 2014)

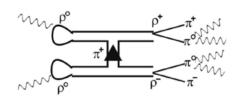
Total Cross Sections

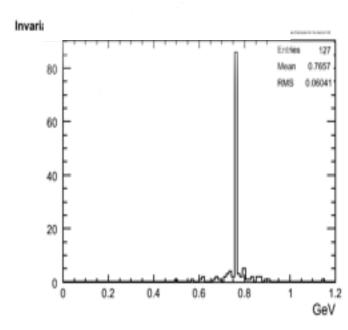
- The results from Pythia very much in accordance with the standard function and the measured data.
- Data for gamma-gamma cross sections at very high energies not available
- Pythia seems to be quiet okay for evaluating gammagamma backgrounds

Introduction

- ▶ Total Cross Sections
- Event Properties
- ▶ Towards an improved description
- Summary and Outlook

Event Properties

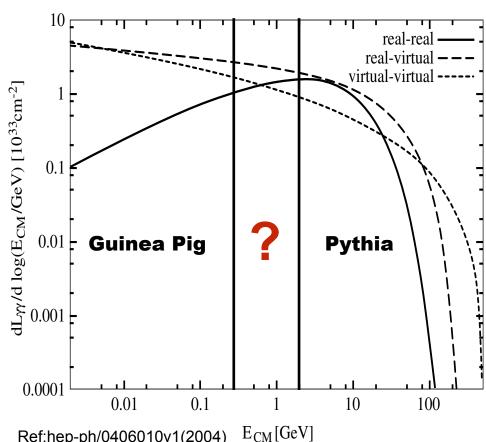

- Taking a look at the individual events from $\gamma\gamma$ => low pT hadrons
- m_{ρ} = 770 MeV and Γ_{ρ} = 145 MeV
- Barklow generator produces Rho mesons of same mass and no width at all.
- Most of the events having two rhomesons are ρ^\pm and no ρ^0
- Events formulated in a way to have three following possibilities


$$\pi^+\pi^-$$

$$\pi^{\pm}\rho^{\pm}$$

$$\rho^+\rho^-$$

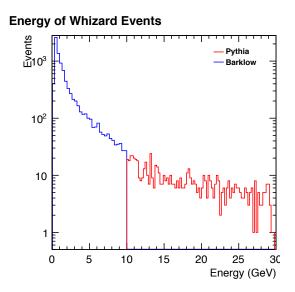
 Should have neutral Rhos and more complex events too

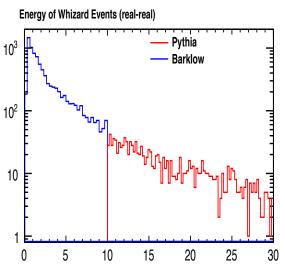

Two groups of rhos:

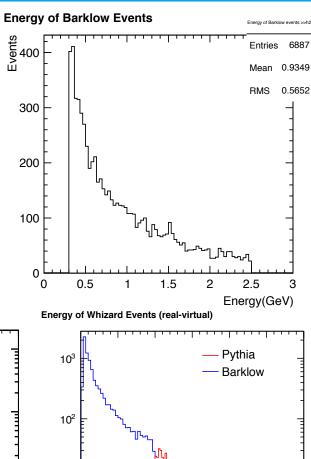
- One with correct width -Pythia
- One with zero width-not pythia

Shortcomings with Pythia

- Pythia can create very nice events with all variety of rhos and complex events
- Hadron productions initialized at 300MeV
- Crucial to understand processes at these energies
- Pythia cannot simulate for energies below 2.5GeV
- Trying for various solutions
 - By changing few parameters
 - Looking at Barklow's methods


Ref:hep-ph/0406010v1(2004)


Introduction


- ▶ Total Cross Sections
- Event Properties
- ▶ Towards an improved description
- Summary and Outlook

Status of events in Current Simulation

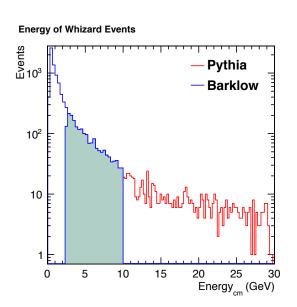
- Whizard events a blend of events from pythia and Barklow generator.
- Events upto 10GeV from Barklow generator
- Events above 10GeV from Pythia
- Can Use Pythia to generate events from 2.5GeV to 10 GeV

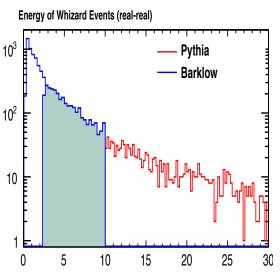
30

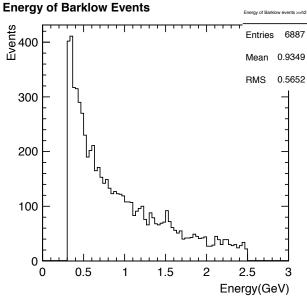
10

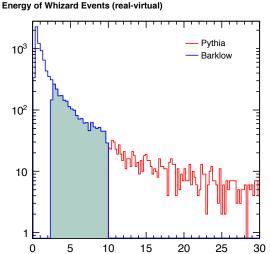
5

15

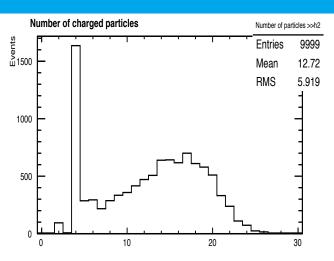

10

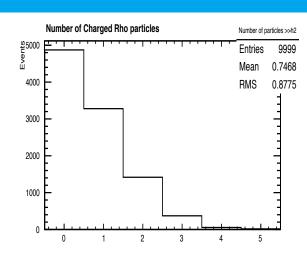

20

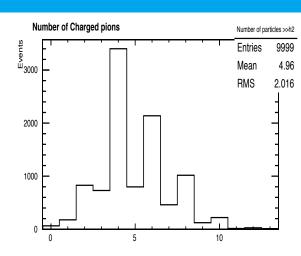

25

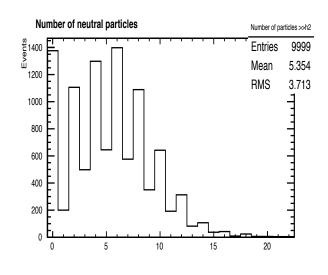

Status of events in Current Simulation

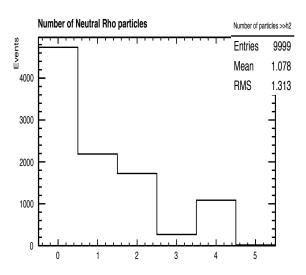
- Whizard events a blend of events from pythia and Barklow generator.
- Events upto 10GeV from Barklow generator
- > Events above 10GeV from Pythia
- Can Use Pythia to generate events from 2.5GeV to 10 GeV

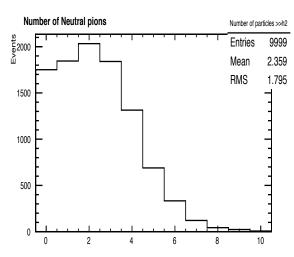








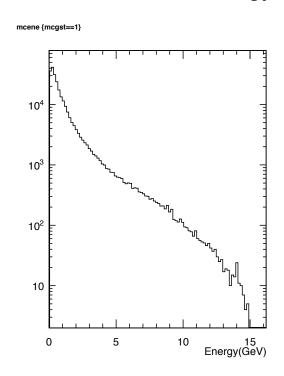

Number of Particles (CMS=6GeV)

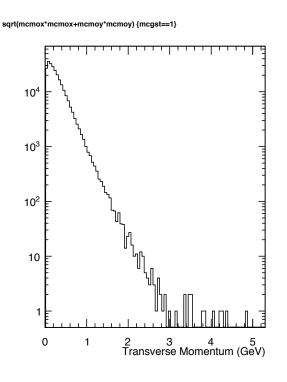


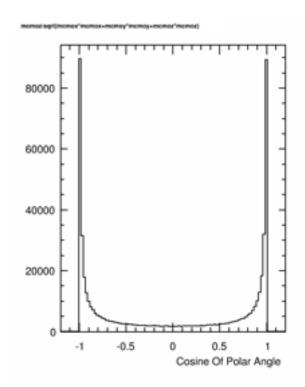
Summary and Outlook

Summary:

- Through the detailed study of the events show that reconsidering the events in Whizard is important
- \circ Very important to have better simulation ways to remove $\gamma\gamma$ backgrounds


Outlook:


- Try to change the cut of Pythia from 10 GeV to 2.5 GeV in Whizard
- Try to bring Pythia for lower energies by changing parameters
- How much important is the 0.3-2.5 GeV range and solutions
- Check alternative programs
- Improve Barklow generator


Back up slides

Pythia as a tool

- Using Pythia to evaluate the properties of particles in the Hadronic interactions
- Plotting for Energy, Transverse Momentum and Cosine of Polar angle at 30 GeV centre of mass energy we have

