
Computing at DESY Zeuthen

An Introduction - Part II

Stephan Wiesand
Summer Students Lecture
Zeuthen, 2015-07-24

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 2

Content

> Part I

■ computing environment

■ policies

■ resources

> desktop PCs (linux)

> login hosts & farms

> storage, AFS basics

■ getting started

> basic shell usage

> email, printing

> application software

> Part II

■ advanced shell usage

> options, aliases

> scripting

> pipelines, I/O redirection

■ more about AFS

> ACLs

■ using the batch farm

■ building software

> compiling & linking

> make, debugging

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 3

Environment Variables

> the shell has variables:

■ my_var="some_value"

> assignment; no space allowed around "="

■ echo $my_var

> dereferencing by prepending a "$"

> more generally: ${my_var}

> shell variables can be exported:

■ export my_var

■ export my_var="some_value"

> exported variables are available to child processes

■ and called "environment variables"

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 4

Commonly Used Variables

> PATH

■ a list of directories, separated by colons (":")

■ where the shell looks for commands

> LD_LIBRARY_PATH

■ where the dynamic loader looks for shared libraries

> PRINTER and LPDEST

■ where your printjobs go by default

> env prints the complete environment

> echo $<var> prints a single variable

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 5

Where to Set the Variables

> ~/.zprofile

■ variables set and exported here are available to all your
processes

■ do NOT change PATH or LD_LIBRARY_PATH here

> unless you really really know what you're doing

> no references to external sites

■ may slow down most everything considerably

> note: ini changes both => NO ini in ~/.zprofile or ~.zshrc

> scripts

■ generally the right place

> generally try to avoid using LD_LIBRARY_PATH

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 6

Globbing

> Unix jargon for wildcards

■ ls -l *.c -> all .c files

■ ls -l *.[chf] -> all .c or .h or .f files

■ ls -ld /usr/?bin -> /usr/sbin

■ echo /usr/bin/a*k -> /usr/bin/awk

> expansion is done by the shell, not the command

■ scp pub3:/tmp/mydir/*.c ~/

> does not work as (often) expected

> because globbing is done locally

> use single quotes to prevent any expansion

■ scp 'pub3:/tmp/mydir/*.c' ~/ works

■ double quotes still expand variables

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 7

Command Aliases

> alias my_command='echo foo'

■ my_command will print "foo"

> alias command2='my_command; echo "bar"'

■ command2 will print 2 lines: "foo" and "bar"

■ note the semicolon separates commands:

> cd /tmp; ls

> aliases can be set in ~/.zshrc

■ read by all interactive shells

> a plain alias will print all defined aliases

> aliases tend to be overused by beginners

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 8

I/O Redirection

> processes have three I/O channels by default

■ stdin reads input

■ stdout prints normal output

■ stderr prints error messages

> ls > list.txt

■ redirects stdout of ls into file list.txt

■ errors are still printed to the terminal

> ls > list.txt 2>&1

■ redirects stderr (2) to stdout (1), and both to list.txt

■ => also errors go into list.txt

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 9

Input Redirection, Pipes

> echo '3*4' > tmpfile; bc < tmpfile; rm tmpfile

■ prints "12"

■ bc is the "binary calculator"

■ "<" redirects stdin

> alternative: echo '3*4'| bc

■ | connects stdout of echo with stdin of bc

■ called a "pipeline" (or “pipe”)

■ ls -l /usr/bin | less

■ use 2>&1 | to pipe stdout and stderr, or short: |&

> I/O redirection does not work for commands using the terminal in
"raw" mode

■ passwd < my_passwd.txt does not work (which is good)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 10

Conditionals

> command1 && command2

■ executes command2 if and only if command1 succeeds

■ commands return an integer to their parent process

■ 0 signals success

■ anything else signals failure

■ return value of last command is in variable $?

> command1 || command2

■ executes command2 if and only if command1 fails

> command1 && echo "ok" || echo "failed"

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 11

Conditionals continued

> if test -e /some/file
then
 do_something
else
 echo "/some/file is missing"; exit 1
fi

■ is another way to do this

■ test is /usr/bin/test

> returns 0 or 1, depending on test result

> test -e <file> tests whether file exists

■ can also be written if [-e /some/file]; then

> interactive shell will prompt nicely if you hit return after a line
opening an if clause

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 12

Loops

> for i in 1 2 3 4 5; do echo $i ; done

■ prints 5 lines: "1", "2",...

■ for i in {1..5}; do echo $i; done is the same

> for f in *.c ; do cp $f $f.BAK ; done

■ creates copies of all c-files in current directory

■ effectively: cp file1.c file1.c.BAK ; cp ...

> for f in *.c ; do cp $f `basename $f .c`_BAK.c ; done

■ basename <file> <suffix> strips suffix off name

■ the backticks substitute the output of their command

■ effectively does cp file1.c file1_BAK.c ; …

> while ["$finished" = 0]; do run_my_cmd ; done

■ yes, there's a while loop too

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 13

Shell Scripts

> recipe for creating a shell script:

1) create a file with a first line #!/bin/zsh

- or, maybe, #!/bin/bash

2) fill it with shell commands

3) make it executable with chmod +x

> this script can be called like any other command

> arguments are available as $1, $2, ... in scripts

> if you have some software that needs a special
LD_LIBRARY_PATH, write a wrapper script and place it into
~/bin

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 14

Wrapper Prototype

> some_command will be executed with the right
LD_LIBRARY_PATH in its environment

> will not affect anything else

> "$@" expands to the list of all parameters passed to the
script

#!/bin/zsh

export LD_LIBRARY_PATH=/afs/cern.ch/atlas/libs

some_command "$@"

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 15

Summary: the Shell

> a very powerful tool worth learning

■ especially when combined with the Unix tool set

> for more information, see

■ the zsh man/info pages

■ the bournint.ps document (use google to find it)

> caveats:

■ what was shown works for the bourne shell family

> zsh, ksh, bash, sh

> there are minor differences between those

■ there is also a csh family with a very different syntax

> csh, tcsh

> NB: even more powerful scripting: perl, python, ruby, ...

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 16

More about AFS

> AFS is a global filesystem

■ segmented into "cells", path: /afs/<cell>/...

> NB: /bin/pwd (not just pwd) shows real current directory

■ DESY Zeuthen cell: ifh.de (to become zeuthen.desy.de)

■ DESY Hamburg cell: desy.de

■ CERN cell: cern.ch

■ FermiLab cell: fnal.gov

> some of its features:

■ reasonable security: valid token needed for access

■ data replication (readonly)

■ data relocation (read-write, transparent to clients!)

■ persistent client cache

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 17

AFS Client Cache

> the client maintains a local cache

■ persistent (still available after reboot)

■ read-write

> local changes to a file are flushed to the server when the file
is closed

> while you edit a file, the authoritative copy resides locally
(possibly: on your desktop)

■ a good editor will close or flush the file when you save

> desktops should be shut down cleanly

> do NOT use the power or reset buttons

> a file being changed on another host may appear empty or
unchanged, until flushed there

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 18

AFS Quotas

> AFS space is handled in chunks called volumes

■ your home directory is one volume

■ your ~/.OldFiles snapshot is another volume

> each volume has an associated quota

■ fs listquota <path> shows

> the quota (maximum amount of data allowed)

> the current usage

■ you should stay below 95%

> is another way to find out whether a dir is in AFS

> ~/.OldFiles does not count for fs listquota ~

> default quota for ~ is small

■ can be increased on request (within reason: ~1-2 GB)

> use other options for bulk storage

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 19

AFS Permissions: ACLs

> AFS permission system is different:

■ traditional Unix filesystem has read, write, execute

■ AFS has access control lists for

> read, write, insert, delete,

> lookup, lock, administrate

■ all these are per directory

■ traditional mode bits are mostly ignored

■ but the x bit retains its meaning

■ an ACL is a list of pairs: (<who>, <mode>)

> who: a user, or a group

> mode: a list of bits, like rwid

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 20

Examining ACLs

> is also done with the fs command:
■ fs listacl <path> shows ACL of a directory

> fs listacl ~ should show

■ system:administrators rlidwka

> the AFS superusers can do anything

■ system:anyuser l

> any user worldwide (!) can lookup files (follow symlinks)

■ <user> rlidwka

> you yourself can do anything as well

> do NOT change the ACL of your ~

■ if you need a different ACL, create a subdir

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 21

Changing ACLs

> fs setacl <path> <who> <mode>

■ handy shortcuts for mode:

> read for rl

> write for rlidwk

> all for rlidwka (careful!)

> none for ""

■ fs setacl ~/code group:cta read

> make ~/code readable for amanda group

■ fs setacl ~/code <user> write

> allow a colleague to do anything but change the ACL

> good for collaborative work

> but better done in group space, not home directory

■ fs setacl /afs/ifh.de/group/dv/drop group:dv li

> allow dv members to create new files, not read/write old ones

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 22

The AFS sysname

> a per-host property

■ 32-bit Scientific Linux 5 in Zeuthen: i586_rhel50

■ 64-bit: amd64_rhel50

■ SL6: amd64_rhel60

■ Solaris 8 on SPARC: sun4x_58

> fs sysname shows the value (list) for a client

> a path component @sys is replaced by the sysname

■ only in AFS

■ typical usage:

> set a link .../bin -> .../@sys/bin

> call .../bin/command to get the right binary automatically

> our systems have a sysname list for compatibility

> nice feature, but often overused

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 23

Summary: AFS

> AFS is our most versatile filesystem

■ homedirs are hosted on the best fileservers we run

> please do not waste the space, it's precious

■ group space is still high quality, but cheaper and more abundant

> AFS is best for collaborative work

■ NB: ~/public/www is available as
http://www-zeuthen.desy.de/~<user>

■ note ~/public is really public

> and remember filenames in ~ are visible for anyone

> AFS space is the right place for

■ valuable files (source code) - if backed up

■ confidential files (CV, saved mails, …)

> AFS is not particularly fast

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 24

Using the Batch Farm

> need to perform some serious calculation?

> desktops usually not powerful, limited RAM

> public login systems (pubs, lx64, ..) are NOT to be used for
actual compute jobs

■ development & test only!

> WGS are limited, and not meant to be abused either

> farm has thousands of fast cores w/ plenty of RAM

■ usage:

1) split task into jobs

2) script them

3) submit the job scripts

■ very powerful resource

> can cause serious problems if used without care

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 25

#!/bin/zsh
#$ -S /bin/zsh
#$ -l h_cpu=04:30:00
#$ -l h_vmem=2300M
#$ -j y
#$ -m ae
#$ -N my_job

hostname; date; env

cd $TMPDIR
cp .../infile .
[$? -eq 0] || cp .../infile .

do_the_work $SGE_TASK_ID

cp outfile /afs/...
[$? -eq 0] || ...

Example Batch Job

> #$... is interpreted by the batch system, the rest is an
ordinary shell script

> submit with qsub -cwd -t 1:32 my_job.sh

otherwise the default shell would be used
the cpu time for this job
the maximum memory usage of this job
stderr and stdout are merged
send mail on job's end and abort
the name of the job

some info we want in the stdout file

always $TMPDIR, NOT /tmp !
fetch input
retry if that failed, repeat...

run the actual job, output to $TMPDIR

store the output file
retry if that failed...

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 26

Batch: Commands

> qsub

■ submit a job (array)

> qstat

■ shows running/waiting jobs

> qhost

■ shows status of execution hosts

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 27

Batch: Precautions

> make sure you have sufficient filesystem quota

■ for all job output

> note 64k files limit per directory in AFS, small files unsuitable for
Lustre and Tape

> be nice to fileservers

■ avoid concurrent jobs writing the same file

■ avoid too many concurrent jobs working in the same directory

> avoid writing too much to stdout/err (home or submit directory)

■ avoid too many concurrent jobs using the same fileserver

■ usually, transfer data at beginning/end of job only

> most of the time, work on the local disk, in $TMPDIR

> avoid mass failures, they cause mail storms and other problems

■ always send a few test jobs first

> read https://dvinfo.ifh.de/Batch_System_Usage

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 28

Batch: Caveat Emptor

> at this time (July/August 2015), the farm is in a transition phase

■ old:

> still the default

> memory requirements have to be specified as “h_vmem”

■ maximum virtual address space

■ new:

> submit jobs after “ssh uge82”

> memory requirements have to be specified as “h_rss”

■ maximum resident set size

■ systems are being migrated from old to new domain

■ documentation of all differences:

 https://dvinfo.zeuthen.desy.de/UGE82Changes

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 29

Building Software

> if your project is small & simple, it's easy:

■ <compiler> -o my_prog <source1> ...

> gcc -o my_prog *.c

> for more complicated projects:

■ two steps:
> compile source files into object files

> link object files + libraries to build the executable

■ shared libraries may need some extra attention

■ commonly done using make
> recompile only files that changed

> build according to rules defined in a Makefile

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 30

The test Trap

> has this happened to you?

■ you have a file test.c, and run gcc -o test test.c

■ you run test, and nothing happens

> there's a /usr/bin/test command

> /usr/bin is searched before . (PATH variable)

> another common case, with the same reason:

■ a group has some standard programme, in your PATH

■ you build a modified version and run it (you believe)

■ your changes seem not to make any difference...

> make it a habit to use ./<command>

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 31

Compilers Available (Linux)

> default: gcc, gfortran (g77), g++ (Solaris: also cc, f77, CC)

■ use these unless there's a good reason not to

> could be: performance, fortran 90/95

■ on SL5/6, the native fortran compiler is gfortran

> g77 is from the gcc34 suite (backward compatibility with SL4)

■ default gcc version on SL6 is 4.4

■ gcc44 / g++44 / gfortran44 are available on SL5

> use for code compatibility between SL5 & SL6

> intel compiler:

■ ifort, icc, icpc

■ different versions available via ini

> portland group compiler

■ use ini -v pgi (also before running your programs)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 32

Common Compilation Options

> -c

■ only compile, do not link

> -g

■ add debugging information to output file

> -O

■ optimize (may be incompatible with -g)

■ often available as -O1 or -O2 or ...

> -o <filename>

■ change the name of the output file

> -I<path> [-I<path2> ...]

■ prepend paths to search path for includes

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 33

Linking

> always use the compiler to link

■ do not call the linker directly

■ the compiler knows about language specific libraries

> common options:

■ -L<path>

> prepend path to search path for libraries

■ -l<some_lib>

> link against libsome_lib.so

■ if available, the shared library is preferred

> or against libsome_lib.a

■ otherwise, the static library is used

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 34

A Complete Example

> let's suppose you

■ have two fortran files:

> main.f and fit.f

■ and have to link against cernlib:

> libkernlib.a libpacklib.a libmathlib.a

> found in /cern/pro/lib

> g77 -c -g -o main.o main.f

> g77 -c -g -o fit.o fit.f

> g77 -o my_fit_prog main.o fit.o \
-L/cern/pro/lib -lkernlib -lmathlib \
-lpacklib

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 35

About Mixing Languages

> mixing C and C++ is rather simple:

■ declare interfaces extern "C" in C++

■ use the C++ compiler for linking

> mixing C/C++ with FORTRAN isn't:

■ fortran symbols usually have an "_" appended

> C's symbol for function some_func() is some_func

> FORTRAN's is some_func_ or even some_func__

> g77 options: -funderscoring, -fno-second-underscore

■ a tool for interfacing: cfortran.h

■ use g++ for linking, add -lg2c (maybe more)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 36

Using Shared Libraries

> advantages over static libraries:

■ faster linking

■ smaller executables

■ less RAM needed if multiple programmes using the same
library are running on the same system

> problem:

■ all shared libs needed for running must be found at run time

> ldd <executable> shows the ones actually found

■ "not found" for one means no go at all

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 37

How programmes find shared libs at run time

> sorted by precedence, by default this is determined by:

■ system's dynamic linker configuration

■ a list of search paths can be recorded at compile time

■ LD_LIBRARY_PATH in environment

> recording a list of paths can be achieved at link time by

■ an environment variable LD_RUN_PATH, or

■ a -rpath <path> [...] argument to the linker

> using the compiler for linking, this must be written as
-Wl,-rpath,<path> [-Wl,-rpath,<path2> ...]

> in some cases, -rpath-link is needed as well

■ use one of these methods if possible

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 38

The make Tool

> make is not a script processor

> Makefiles are not scripts

■ typically not processed top to bottom

> make is a tool to create files

■ typically from other files (-> dependencies)

■ according to rules

■ rules are defined in the Makefile

> prefer GNU make (non-Linux: typically available as gmake)

■ available on all relevant platforms

■ generally superior to vendor's make

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 39

Our Example Using make

> make my_fit_prog will now do the job

> is already better than a script

■ recompiles only changed files

the Makefile

main.o: main.f
g77 -c -g -o main.o main.f

fit.o: fit.f
g77 -c -g -o fit.o fit.f

my_fit_prog: main.o fit.o
g77 -o my_fit_prog main.o fit.o \

-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

a Tab character!

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 40

Make Targets & Rules

> our make file has three targets

■ main.o, fit.o, my_fit_prog

■ <target>: <dependencies>

> read ":" as "depends on"

> empty dependencies are ok

> make <target> means: create the file <target>

> a simple make means: make <topmost target>

> the lines after the target definition tell make how to create
the file (must start with a tab)

■ together, this is called a rule

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 41

Our Example with a Default Target

> now a simple make will create my_fit_prog

■ unless the file "all" exists

the Makefile

all: my_fit_prog

main.o: main.f
g77 -c -g -o main.o main.f

fit.o: fit.f
g77 -c -g -o fit.o fit.f

my_fit_prog: main.o fit.o
g77 -o my_fit_prog main.o fit.o \

-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 42

make Variables

FC:=g77
FCOPTS:=-c -g
LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

all: my_fit_prog

main.o: main.f
$(FC) $(FCOPTS) -o main.o main.f

fit.o: fit.f
 $(FC) $(FCOPTS) -o fit.o fit.f

my_fit_prog: main.o fit.o
g77 -o my_fit_prog main.o fit.o $(LIBS)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 43

make Variables

> can be set in the Makefile with

■ = evaluated recursively

■ := no recursion (can be much faster - use this)

> can also come from the environment or command line

> make FC=ifort would use the intel compiler instead

> useful special variables:

■ $@

> the (first) target file of a rule

■ $<

> the input file(s) of a rule

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 44

Special make Variables

FC:=g77
FCOPTS:=-c -g
LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib
OBJECTS:=main.o fit.o

all: my_fit_prog

main.o: main.f
$(FC) $(FCOPTS) -o $@ $<

fit.o: fit.f
$(FC) $(FCOPTS) -o $@ $<

my_fit_prog: $(OBJECTS)
$(FC) -o $@ $(OBJECTS) $(LIBS)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 45

Generic Rules

FC:=g77
FCOPTS:=-c -g
LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib
OBJECTS:=main.o fit.o

all: my_fit_prog

get rid of all builtin default rules
.SUFFIXES:

how to compile fortran source files
%.o: %.f

$(FC) $(FCOPTS) -o $@ $<

my_fit_prog: $(OBJECTS)
$(FC) -o $@ $(OBJECTS) $(LIBS)

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 46

Summary: make

> very powerful tool

> prefer it over scripts for building

> can do much more

■ additional dependencies (on include files...)

> can even be done automatically (but not trivial)

■ substitute shell command output

> use xxx-config commands to get libs, include paths

■ more and more packages have one (ROOT, cernlib, ...)

■ perform transformations on variable content...

> consult make's info pages for more information

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 47

Debugging Your Software

> compile all source files to be debugged with -g

■ compile without -O, or result may be confusing

> for gcc & friends, the debugger is gdb

■ other compilers may need others

> gdb itself is not very convenient to use

> convenient frontends:

■ emacs - use M-x gdb

> very usable, but takes some getting used to

■ ddd

> GUI, very easy to use

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 48

gdb Commands

> step single step to next source line

> next like step, not stepping into subroutines

> break set a breakpoint (at file:line or a routine)

> cont continue running until finished or breakpoint

> print print a variable's content

> display keep printing a variable's content

> watch stop execution when a variable changes

■ dynamic breakpoints

> many more ...

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 49

Appendix A

> Remember:

■ always have a valid AFS token, and some space left in ~

■ think thrice about what you store where

■ don't abuse the public login systems nor your group's WGS

■ mail problems/requests to uco-zn@desy.de

> include as much information as possible

> Some URLs (useful, but maybe hard to find):

■ http://dvinfo.ifh.de

■ http://dv-zeuthen.desy.de/services/mail

■ http://www-it.desy.de/support/help/uco_documentation/afs.html.en

■ http://dv-zeuthen.desy.de/services/afs/afs_user_guide/

■ http://www-zeuthen.desy.de/~wiesand/intro/

Stephan Wiesand | Computing at DESY Zeuthen - an Introduction, Part II | 2015-07-24 | Page 50

That's it, finally

>Again: Have a pleasant and
successful stay here at DESY
Zeuthen!

>Questions ?

