Introduction to the Standard Model

Summer Student Lecture 2015 – Part I

Kristin Lohwasser **DESY**

Preface

- > This lecture cannot replace a university course on particle physics
- ➤ Very different level of knowledge: Hard to devise a course that fits all.... → Some parts more interesting to beginners, some more to the more advanced
- Concentrating on general concepts and a broad overview
- > Please do ask questions!

Content

- > 0) Introduction
 - What is the Standard Model?
 - Coupling constants, masses and charges
 - Units and scales
- > 1) Interactions
 - Relativistic kinematics
 - Symmetries and conserved quantities
 - Dirac equation
 - Feynman diagrams
 - Cross section measurements
- > 2) Quantum electrodynamics: Tests of QED
 - low energy: Magnetic momentum of the electron
 - tests at high energy colliders

Content

> 3) Electroweak interactions

- Discovery of electroweak bosons
- Tests of angular distributions
- Feynman rules
- Handed-ness of electroweak interactions
- More tests of the electroweak SM
- > 4) Strong Interaction: Quantum-Chromodynamics
 - Quarks and Hadrons
 - QCD at colliders
 - PDFs and parton showers

0) Introduction: What is the Standard Model?

Describes elementary particles and interaction in self-consistent way

Kristin Lohwasser | Introduction to the Standard Model – DESY Summer student programme | 3./4. August.2015 | Page 5

picture from wikipedia

0) Introduction: What is the Standard Model?

Describes elementary particles and interaction in self-consistent way

- Force particles versus matter particles Gauge bosons versus Leptons/Quarks Spin 1 versus spin ½ particles
- Gluon versus photon/Z/W boson Strong interaction versus electro-weak interaction
- Photon versus Z/W boson Electromagnetic versus weak interactions
- Leptons versus Quarks Charge 1 versus charge 1/3 Colorless versus colored particles
- Generations rising masses – lowest generation: stable matter

0) Introduction: What is the Standard Model?

Interactions between particles

Kristin Lohwasser | Introduction to the Standard Model – DESY Summer student programme | 3./4. August.2015 | Page 7

0) Introduction: SM – A success story with flaws I

Predictions based on theory found to be experimentally valid Experimental findings could be well incorporated into theory

A few exceptions / puzzles based on experimental observation:

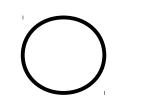
- Gravity. The standard model does not explain gravity. "Graviton" neither discovered nor does it fit cosmological observations / general relativity.
- Dark matter and dark energy. Standard model describes only 5% of the matter of the universe. Dark matter (26%) and dark energy (69%) [from cosmological observations and general relativity] unexplained – no candidates for dark matter, SM vacuum energy mismatches dark energy.
- > **Neutrino masses.** Very small masses for neutrinos, not expected
- Matter-antimatter asymmetry. SM unable to explain, how and/or why matter dominates over anti-matter in our universe.

0) Introduction: SM – A success story with flaws II

- Some parts of the SM are added "ad-hoc" or "by hand" this means a certain parameter or mechanism needs to be postulated – not in contradiction to any observations and theoretically valid, but still not "satisfying" aesthetically
- Hierarchy problem. Fine tuning of Higgs mass versus quantum corrections over several orders of magnitude. (e.g. cancellation of the size ~10¹⁶)
- Strong CP problem. Theoretically, the SM should contain a term that breaks CP symmetry - relating matter to antimatter – in QCD. Experimentally, however, no such violation has been found, implying that the coefficient of this term is very close to zero → unnatural.
- Number of SM parameters. Standard model depends on 19 numerical parameters. Their values are known from experiment, but the origin of the values is unknown.

Aim of the lecture: Understand better how SM was established and what its problems are

Kristin Lohwasser | Introduction to the Standard Model – DESY Summer student programme | 3./4. August.2015 | Page 9


0) Coupling constants, masses and charges

- Interaction can be described as exchange of field quanta
- > Graviation

> Coulomb-force in electromagnetism

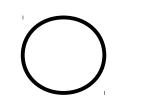
> Generic interaction

Only charged particles participate in interaction

Quarks: carry electrical charge color charge weak charge

Massive leptons: carry electrical charge weak charge

Neutrinos: carry weak charge


0) Coupling constants, masses and charges

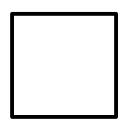
- Interaction can be described as exchange of field quanta
- > Graviation

> Coulomb-force in electromagnetism

> Generic interaction

Only charged particles participate in interaction

Quarks: carry electrical charge color charge weak charge


Massive leptons: carry electrical charge weak charge

Neutrinos: carry weak charge

0) The Heisenberg principle

> Interaction carried by "force carrier"

- Heisenberg principle: limits the precision with which (certain) pairs of physical quantities can be determined
- > relation energy \leftrightarrow times:
- since in a particles rest frame the energy is given by the mass, this implies that only stable particles have an exact mass!

Life time τ

0) The Heisenberg principle II

> Energy/mass of "force carrier" related to reach of interaction

Kristin Lohwasser | Introduction to the Standard Model – DESY Summer student programme | 3./4. August.2015 | Page 13

0) The Heisenberg principle III

> Interaction carried by "force carrier"

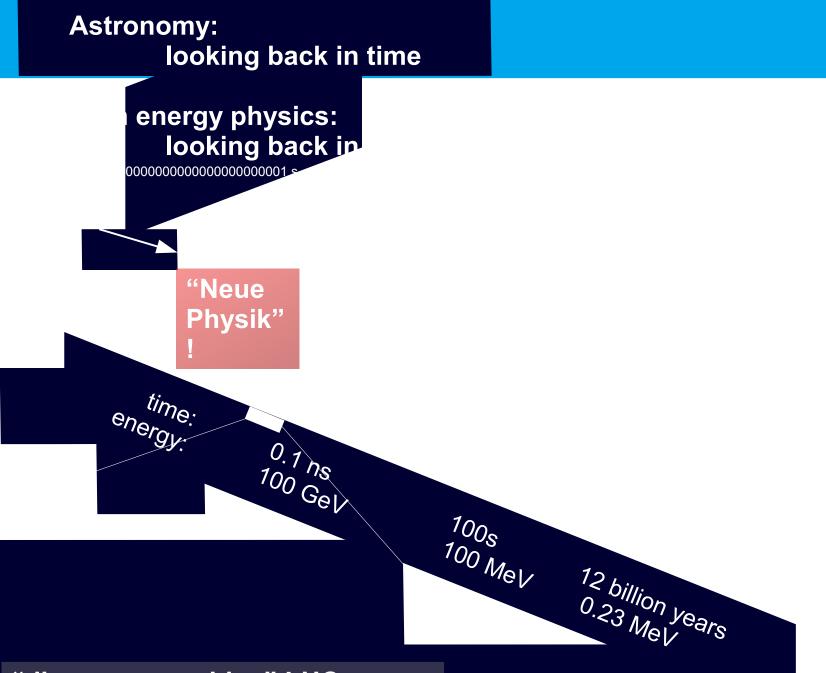
.....

> relation momentum \leftrightarrow position:

- Another possible application: the maximum possible momentum transfer in a reaction limits the size of structures you can resolve (what counts is the momentum transfer in the center-of-mass frame)
- Examples: you need a momentum transfer of 200 MeV to resolve structures of the size of a proton (1 fm)

0) Units and scales

> "natural units" $\rightarrow c = 1$ $\hbar = 1$


(masses, energies and momenta measured in GeV)

[Taken from: Quarks and Leptons: An Introductory Course in Modern Particle Physics Francis Halzen/Alan D. Martin]

0) Units and scales

"discovery machine" LHC

1) Interactions: Relativistic kinematics

- particle quantities are described as 4-vectors: energy/momentum: p=(E, p) time/space: x=(t, x)
- product of 4-vectors is invariant: p₁·p₂=(E₁·E₂-p₁·p₂)=constant → can use the "easiest" reference frame for calculations
 special case: p·p=(E²-p̄·p̄)=(E₀²-0)=m² with β=v/c and γ=1/√1-β²: E=γm and |p̄|=βγm

1) Interactions: Relativistic kinematics I

>

> Interaction can be described as exchange of field quanta

1) Quick reminder: Dirac Equation

> Based on Schroedinger equation:

> Not valid for relativistic particles \rightarrow Klein-Gordon equation (spin-1)

$$\frac{1}{c}\frac{\partial\psi}{\partial t} + \boldsymbol{\alpha}\cdot\nabla\boldsymbol{\psi} + \frac{im_0c\beta}{\hbar}\boldsymbol{\psi} = 0.$$

Pauli-Matrices

with α and $\sigma\,$ being vectors:

Dirac-Matrices: γ

Dirac-Spinor: $\psi \rightarrow$ (negative)positive energy solution: (anti-)particles

Dirac-Current: $\mathbf{j}^{\mu} = -\mathbf{e} \ \overline{\psi} \mathbf{y}^{\mu} \psi \longrightarrow \text{current is conserved} \quad \partial_{\mu} \left(\overline{\psi} \gamma^{\mu} \psi \right) = 0.$

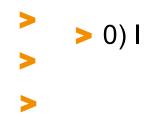
1) Symmetries and conserved quantities

From Quantum mechanics: Symmetry connected to conserved quantity

various quantities conserved in SM interactions

1) Feynman diagrams

Interaction can be described as exchange of field quanta

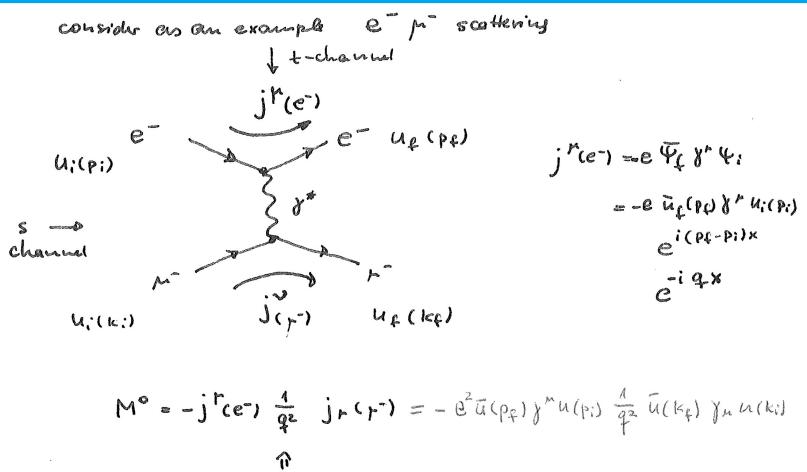

1) Feynman diagrams

1) Feynman diagrams

1) Higher orders

1) Loop diagrams

> Possible is also the occurrence of "virtual" particles in loops


Need to be able to couple to propagator

?

One loop

0) Feynman diagrams: example of eµ scattering

Photon propagator

- Average over spins in initial state, sum spins in final state
- > Replace outgoing e- by backwards traveling e+ \rightarrow amplitude for ee $\rightarrow \mu\mu$

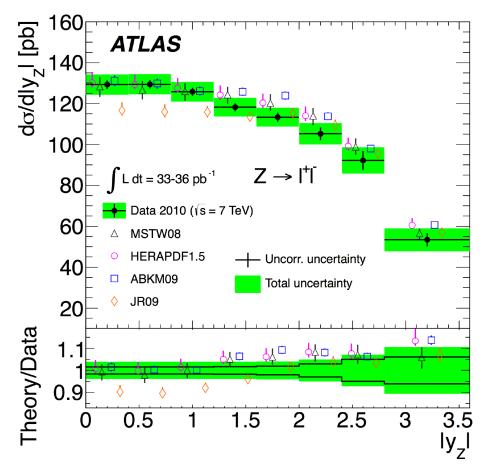
0) Feynman diagrams: example of eµ scattering I

> Get simpler expressions:

0) Feynman diagrams: example of eµ scattering I

> Measurements:

How to measure a cross section


Kristin Lohwasser | Introduction to the Standard Model – DESY Summer student programme | 3./4. August.2015 | Page 30

How to measure a differential cross section

More on differential cross sections

- differential cross section can be compared to theory predictions
 - can exclude predictions that describe the total cross section but differ in shape
- meaningful comparison only possible if uncertainties are known!
 - statistical uncertainties (from signal and background events!)
 - systematic uncertainties (efficiency, branching ratio, luminosity)
 - are there correlations between the bins? (e.g. uncertainty on luminosity shifts all data points the same way → correlated)

