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The formula for cross section
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q2 )ūr(k)(−ieγν)vr′(k′)



DIRECT CALCULATION

The formula for cross section
The formula for calculating the cross section is following:

dσ =
|M|2

F
dLips

|M|- the amplitude F-initial flux

Lips-phase space

Amplitude is most important-easy to establish:

M = v̄s′(p′)(−ieγµ)us(p)(
−igµν
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CALCULATION VIA OPTICAL THEOREM

The optical theorem

Imaginary part of amplitude for all intermediate states is
proportial to the total cross section for the process:

Im M(A→ A) = 2ECM pCM
∑

X

σ(A→ X)

All we need to do for calculating one loop contribution is to
consider the diagram:
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METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
1 I(1, 1) =

∫
dDk 1

k2−m2
1

(k+p)2−m2 = 1
P1P2
→UNKNOWN

2 I(1, 0) =
∫

dDk 1
k2−m2 = 1

P1
→KNOWN

Integral I(1, 1) can be evaluated making use of method of
differential equations:

• First step: calculating the derivative: 2p2 ∂
∂p2 I(1, 1)

• Second step: using IBP relations in order to reduce the
integrals to the simpler ones

• Third step: calculating integral order by order in the
expansion of Laurent series
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METHOD OF DIFFERENTIAL EQUATIONS AND

IBP RELATIONS IN DETAIL
EXAMPLE:
We act with the operator 2p2 ∂

∂p2 on our integral:

2p2 ∂

∂p2 I(1, 1) = I(0, 2)− p2I(1, 2)− I(1, 1)

We reduce the unknown integrals i.e. I(0, 2) and I(1, 2) using
IBP relations:

IBP relations
The equalities of the form are called IBP relations:∫

dDk
∂

∂kµ
pµI(n1,n2) = 0,

where pµ–internal or external momenta
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METHOD OF DIFFERENTIAL EQUATIONS AND

IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

∂I(1, 1)

∂p2 =
2(D− 2)I(0, 1)− I(1, 1)[(D− 4)p2 + 4m2]

(4m2 − p2)p2 .

We expand both sides of the equation in ε (D = 4− 2ε),
for example:

I(1, 1) = y[p2] =
1
ε

y−1[p2] + y0[p2] + y1[p2]ε

REMARK: In order to get the solution for higher order we
need to know the value of the integral for lower order.
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NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

I(1, 1, 0, 0, 0) I(1, 1, 1, 0, 0) I(1, 1, 1, 1, 0) I(1, 0, 0, 1, 1)

I(1, 0, 0, 1, 2)

where

I(n1,n2,n3,n4,n5) =

∫
dDk

1
Pn1

1 Pn2
2 Pn3

3 Pn4
4 Pn5

5

and

P1 = (k1+p)2−m2 P2 = (k2+p)2−m2 P3 = k2
1−m2 P4 = k2

2−m2

P5 = (k1 − k2)2
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1 Evaluation of master integrals I(1, 0, 0, 1, 1)
and I(1, 0, 0, 1, 2),

2 Taking the imaginary part of the amplitude
3 Regularization of the amplitude

we get the following correction to the amplitude:
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THE CONCLUSIONS

• The cross section at tree level via direct method and optical
theorem has been calculated

• The method of IBP relations and differential equations was
used in order to calculate the master integrals

• The NLO correction to the total cross section has been
evaluated using optical theorem

• The correction is not big, but it’s meaningful for
experimental tests of the Standard Model



THE CONCLUSIONS

• The cross section at tree level via direct method and optical
theorem has been calculated

• The method of IBP relations and differential equations was
used in order to calculate the master integrals

• The NLO correction to the total cross section has been
evaluated using optical theorem

• The correction is not big, but it’s meaningful for
experimental tests of the Standard Model



THE CONCLUSIONS

• The cross section at tree level via direct method and optical
theorem has been calculated

• The method of IBP relations and differential equations was
used in order to calculate the master integrals

• The NLO correction to the total cross section has been
evaluated using optical theorem

• The correction is not big, but it’s meaningful for
experimental tests of the Standard Model



THE CONCLUSIONS

• The cross section at tree level via direct method and optical
theorem has been calculated

• The method of IBP relations and differential equations was
used in order to calculate the master integrals

• The NLO correction to the total cross section has been
evaluated using optical theorem

• The correction is not big, but it’s meaningful for
experimental tests of the Standard Model



THE CONCLUSIONS

• The cross section at tree level via direct method and optical
theorem has been calculated

• The method of IBP relations and differential equations was
used in order to calculate the master integrals

• The NLO correction to the total cross section has been
evaluated using optical theorem

• The correction is not big, but it’s meaningful for
experimental tests of the Standard Model



THANK YOU FOR YOUR ATTENTION


