Next-to-leading order QCD corrections to the $e^{+} e^{-} \rightarrow t \bar{t}$ total cross section

Monika Richter
THEO group
Supervisors: P.Marquard, T.Riemann

DESY Summer Student Programme 2015

FINAL PRESENTATION

OUR PROCESS: $e^{+} e^{-} \rightarrow t \bar{t}$

The contribution to the total cross section at tree level Two ways of calculation:

- Direct calculation,
- Via optical theorem.

OUR PROCESS: $e^{+} e^{-} \rightarrow t \bar{t}$

The contribution to the total cross section at tree level Two ways of calculation:

- Direct calculation,
- Via optical theorem.

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d L i p s
$$

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d L i p s
$$

| M | - the amplitude

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d \text { Lips }
$$

$|\mathrm{M}|$ - the amplitude \quad F-initial flux

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d L i p s
$$

$|\mathrm{M}|$ - the amplitude
F-initial flux Lips-phase space

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d \text { Lips }
$$

$|\mathrm{M}|$ - the amplitude
F-initial flux Lips-phase space
Amplitude is most important-easy to establish:

Direct calculation

The formula for cross section

The formula for calculating the cross section is following:

$$
d \sigma=\frac{|\mathbf{M}|^{2}}{F} d \text { Lips }
$$

$|\mathrm{M}|$ - the amplitude F-initial flux Lips-phase space
Amplitude is most important-easy to establish:

$$
\mathbf{M}=\bar{v}^{s^{\prime}}\left(p^{\prime}\right)\left(-i e \gamma^{\mu}\right) u^{s}(p)\left(\frac{-i g_{\mu \nu}}{q^{2}}\right) \bar{u}^{r}(k)\left(-i e \gamma^{\nu}\right) v^{r^{\prime}}\left(k^{\prime}\right)
$$

Direct calculation

DIRECT CALCULATION

Straightforward calculations for cross section gives:

DIRECT CALCULATION

Straightforward calculations for cross section gives:

$$
\sigma_{T O T}=\frac{4 \pi \alpha^{2} Q^{2}}{E_{C M}^{2}} \sqrt{1-\frac{m_{t}^{2}}{E^{2}}}\left(1+\frac{m_{t}^{2}}{2 E^{2}}\right)
$$

Direct calculation

Straightforward calculations for cross section gives:

$$
\sigma_{T O T}=\frac{4 \pi \alpha^{2} Q^{2}}{E_{C M}^{2}} \sqrt{1-\frac{m_{t}^{2}}{E^{2}}}\left(1+\frac{m_{t}^{2}}{2 E^{2}}\right)
$$

CALCULATION VIA OPTICAL THEOREM

The optical theorem

CALCULATION VIA OPTICAL THEOREM

The optical theorem

Imaginary part of amplitude for all intermediate states is proportial to the total cross section for the process:

CALCULATION VIA OPTICAL THEOREM

The optical theorem

Imaginary part of amplitude for all intermediate states is proportial to the total cross section for the process:

$$
\operatorname{Im} M(A \rightarrow A)=2 E_{C M} p_{C M} \sum_{X} \sigma(A \rightarrow X)
$$

CALCULATION VIA OPTICAL THEOREM

The optical theorem

Imaginary part of amplitude for all intermediate states is proportial to the total cross section for the process:

$$
\operatorname{Im} M(A \rightarrow A)=2 E_{C M} p_{C M} \sum_{X} \sigma(A \rightarrow X)
$$

All we need to do for calculating one loop contribution is to consider the diagram:

CALCULATION VIA OPTICAL THEOREM

The optical theorem

Imaginary part of amplitude for all intermediate states is proportial to the total cross section for the process:

$$
\operatorname{Im} M(A \rightarrow A)=2 E_{C M} p_{C M} \sum_{X} \sigma(A \rightarrow X)
$$

All we need to do for calculating one loop contribution is to consider the diagram:

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

$$
i \Pi^{\mu \nu}=-\int \frac{d^{D} k}{(2 \pi)^{4}} \operatorname{Tr}\left[i e_{0} \gamma^{\mu} i \frac{\not k+\not p}{(k+p)^{2}-m^{2}} i e_{0} \gamma^{\nu} i \frac{\not k+m}{k^{2}-m^{2}}\right]
$$

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

$$
i \Pi^{\mu \nu}=-\int \frac{d^{D} k}{(2 \pi)^{4}} \operatorname{Tr}\left[i e_{0} \gamma^{\mu} i \frac{\not k+\not p}{(k+p)^{2}-m^{2}} i e_{0} \gamma^{\nu} i \frac{\not k+m}{k^{2}-m^{2}}\right]
$$

Let us denote:

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

$$
i \Pi^{\mu \nu}=-\int \frac{d^{D} k}{(2 \pi)^{4}} \operatorname{Tr}\left[i e_{0} \gamma^{\mu} i \frac{\not k+\not p}{(k+p)^{2}-m^{2}} i e_{0} \gamma^{\nu} i \frac{\not k+m}{k^{2}-m^{2}}\right]
$$

Let us denote:

- $P_{1}=k^{2}-m^{2}$

CALCULATION VIA OPTICAL THEOREM

The amplitude for the process:

$$
i \Pi^{\mu \nu}=-\int \frac{d^{D} k}{(2 \pi)^{4}} \operatorname{Tr}\left[i e_{0} \gamma^{\mu} i \frac{\not k+\not p}{(k+p)^{2}-m^{2}} i e_{0} \gamma^{\nu} i \frac{\not k+m}{k^{2}-m^{2}}\right]
$$

Let us denote:

- $P_{1}=k^{2}-m^{2}$
- $P_{2}=(k+p)^{2}-m^{2}$

METHOD OF DIFFERENTIAL EQUATIONS

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN
(2) $I(1,0)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}}=\frac{1}{P_{1}} \rightarrow \mathbf{K N O W N}$

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN
(2) $I(1,0)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}}=\frac{1}{P_{1}} \rightarrow \mathbf{K N O W N}$

Integral $I(1,1)$ can be evaluated making use of method of differential equations:

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN
(2) $I(1,0)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}}=\frac{1}{P_{1}} \rightarrow \mathbf{K N O W N}$

Integral $I(1,1)$ can be evaluated making use of method of differential equations:

- First step: calculating the derivative: $2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)$

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN
(2) $I(1,0)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}}=\frac{1}{P_{1}} \rightarrow \mathbf{K N O W N}$

Integral $I(1,1)$ can be evaluated making use of method of differential equations:

- First step: calculating the derivative: $2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)$
- Second step: using IBP relations in order to reduce the integrals to the simpler ones

METHOD OF DIFFERENTIAL EQUATIONS

After some transformations we end up with:
(1) $I(1,1)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}} \frac{1}{(k+p)^{2}-m^{2}}=\frac{1}{P_{1} P_{2}} \rightarrow$ UNKNOWN
(2) $I(1,0)=\int d^{D} k_{\frac{1}{k^{2}-m^{2}}}=\frac{1}{P_{1}} \rightarrow \mathbf{K N O W N}$

Integral $I(1,1)$ can be evaluated making use of method of differential equations:

- First step: calculating the derivative: $2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)$
- Second step: using IBP relations in order to reduce the integrals to the simpler ones
- Third step: calculating integral order by order in the expansion of Laurent series

Method of differential equations and IBP RELATIONS IN DETAIL

EXAMPLE:

We act with the operator $2 p^{2} \frac{\partial}{\partial p^{2}}$ on our integral:

Method of differential equations and IBP RELATIONS IN DETAIL

EXAMPLE:

We act with the operator $2 p^{2} \frac{\partial}{\partial p^{2}}$ on our integral:

$$
2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)=I(0,2)-p^{2} I(1,2)-I(1,1)
$$

METHOD OF DIFFERENTIAL EQUATIONS AND IBP RELATIONS IN DETAIL

EXAMPLE:

We act with the operator $2 p^{2} \frac{\partial}{\partial p^{2}}$ on our integral:

$$
2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)=I(0,2)-p^{2} I(1,2)-I(1,1)
$$

We reduce the unknown integrals i.e. $I(0,2)$ and $I(1,2)$ using IBP relations:

Method of differential equations and IBP RELATIONS IN DETAIL

EXAMPLE:
We act with the operator $2 p^{2} \frac{\partial}{\partial p^{2}}$ on our integral:

$$
2 p^{2} \frac{\partial}{\partial p^{2}} I(1,1)=I(0,2)-p^{2} I(1,2)-I(1,1)
$$

We reduce the unknown integrals i.e. $I(0,2)$ and $I(1,2)$ using IBP relations:

IBP relations

The equalities of the form are called IBP relations:

$$
\int d^{D} k \frac{\partial}{\partial k^{\mu}} p_{\mu} I\left(n_{1}, n_{2}\right)=0
$$

where p_{μ}-internal or external momenta

METHOD OF DIFFERENTIAL EQUATIONS AND IBP RELATIONS IN DETAIL

Method of differential equations and IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

Method of differential equations and IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

$$
\frac{\partial I(1,1)}{\partial p^{2}}=\frac{2(D-2) I(0,1)-I(1,1)\left[(D-4) p^{2}+4 m^{2}\right]}{\left(4 m^{2}-p^{2}\right) p^{2}}
$$

Method of differential equations and IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

$$
\frac{\partial I(1,1)}{\partial p^{2}}=\frac{2(D-2) I(0,1)-I(1,1)\left[(D-4) p^{2}+4 m^{2}\right]}{\left(4 m^{2}-p^{2}\right) p^{2}}
$$

We expand both sides of the equation in $\varepsilon(D=4-2 \varepsilon)$, for example:

Method of differential equations and IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

$$
\frac{\partial I(1,1)}{\partial p^{2}}=\frac{2(D-2) I(0,1)-I(1,1)\left[(D-4) p^{2}+4 m^{2}\right]}{\left(4 m^{2}-p^{2}\right) p^{2}}
$$

We expand both sides of the equation in $\varepsilon(D=4-2 \varepsilon)$, for example:

$$
I(1,1)=y\left[p^{2}\right]=\frac{1}{\varepsilon} y_{-1}\left[p^{2}\right]+y_{0}\left[p^{2}\right]+y_{1}\left[p^{2}\right] \varepsilon
$$

Method of differential equations and IBP RELATIONS IN DETAIL

We get the following differential equation to solve:

$$
\frac{\partial I(1,1)}{\partial p^{2}}=\frac{2(D-2) I(0,1)-I(1,1)\left[(D-4) p^{2}+4 m^{2}\right]}{\left(4 m^{2}-p^{2}\right) p^{2}}
$$

We expand both sides of the equation in $\varepsilon(D=4-2 \varepsilon)$, for example:

$$
I(1,1)=y\left[p^{2}\right]=\frac{1}{\varepsilon} y_{-1}\left[p^{2}\right]+y_{0}\left[p^{2}\right]+y_{1}\left[p^{2}\right] \varepsilon
$$

REMARK: In order to get the solution for higher order we need to know the value of the integral for lower order.

NLO CORRECTION TO THE TOTAL CROSS SECTION

We use optical theorem once again, we have to consider the diagrams:

NLO CORRECTION TO THE TOTAL CROSS SECTION

We use optical theorem once again, we have to consider the diagrams:

NLO CORRECTION TO THE TOTAL CROSS SECTION

We use optical theorem once again, we have to consider the diagrams:

NLO CORRECTION TO THE TOTAL CROSS SECTION

We use optical theorem once again, we have to consider the diagrams:

NLO CORRECTION TO THE TOTAL CROSS SECTION

Let's take the first diagram:

NLO CORRECTION TO THE TOTAL CROSS SECTION

Let's take the first diagram:

NLO CORRECTION TO THE TOTAL CROSS SECTION

Let's take the first diagram:

Amplitude for the process:

NLO CORRECTION TO THE TOTAL CROSS SECTION

Let's take the first diagram:

Amplitude for the process:

$$
\begin{gathered}
i \Pi_{\mu}^{\mu}=e_{0}^{4} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \int \frac{d^{D} k_{2}}{(2 \pi)^{D}} \operatorname{Tr}\left[\gamma^{\mu} \frac{k_{1}+\not p+m}{\left(k_{1}+p\right)^{2}-m^{2}} \gamma_{\mu} \frac{k_{1}+m}{k_{1}^{2}-m^{2}} \gamma^{\nu}\right. \\
\left.\frac{k_{2}+m}{k_{2}^{2}-m^{2}} \gamma_{\nu} i \frac{k_{1}+m}{k_{1}^{2}-m^{2}} \frac{1}{\left(k_{1}-k_{2}\right)^{2}}\right]
\end{gathered}
$$

NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

$$
I(1,1,0,0,0) \quad I(1,1,1,0,0) \quad I(1,1,1,1,0) \quad I(1,0,0,1,1)
$$

NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

$$
\begin{gathered}
I(1,1,0,0,0) \quad I(1,1,1,0,0) \quad I(1,1,1,1,0) \quad I(1,0,0,1,1) \\
I(1,0,0,1,2)
\end{gathered}
$$

NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

$$
I(1,1,0,0,0) \quad I(1,1,1,0,0) \quad I(1,1,1,1,0) \quad I(1,0,0,1,1)
$$

$$
I(1,0,0,1,2)
$$

where

$$
I\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\int d^{D} k \frac{1}{P_{1}^{n_{1}} P_{2}^{n_{2}} P_{3}^{n_{3}} P_{4}^{n_{4}} P_{5}^{n_{5}}}
$$

NLO CORRECTION-MASTER INTEGRALS

After applying IBP relations we get 5 master integrals:

$$
\begin{gathered}
I(1,1,0,0,0) \quad I(1,1,1,0,0) \quad I(1,1,1,1,0) \quad I(1,0,0,1,1) \\
I(1,0,0,1,2)
\end{gathered}
$$

where

$$
I\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\int d^{D} k \frac{1}{P_{1}^{n_{1}} P_{2}^{n_{2}} P_{3}^{n_{3}} P_{4}^{n_{4}} P_{5}^{n_{5}}}
$$

and

$$
\begin{gathered}
P_{1}=\left(k_{1}+p\right)^{2}-m^{2} \quad P_{2}=\left(k_{2}+p\right)^{2}-m^{2} \quad P_{3}=k_{1}^{2}-m^{2} \quad P_{4}=k_{2}^{2}-m^{2} \\
P_{5}=\left(k_{1}-k_{2}\right)^{2}
\end{gathered}
$$

NLO CORRECTION- CROSS SECTION

After:

NLO CORRECTION- CROSS SECTION

After:

(1) Evaluation of master integrals $I(1,0,0,1,1)$ and $I(1,0,0,1,2)$,

NLO CORRECTION- CROSS SECTION

After:

(1) Evaluation of master integrals $I(1,0,0,1,1)$ and $I(1,0,0,1,2)$,
(2) Taking the imaginary part of the amplitude

NLO CORRECTION- CROSS SECTION

After:

(1) Evaluation of master integrals $I(1,0,0,1,1)$ and $I(1,0,0,1,2)$,
2 Taking the imaginary part of the amplitude
(3) Regularization of the amplitude

NLO CORRECTION- CROSS SECTION

After:

(1) Evaluation of master integrals $I(1,0,0,1,1)$ and $I(1,0,0,1,2)$,
2 Taking the imaginary part of the amplitude
(3) Regularization of the amplitude we get the following correction to the amplitude:

NLO CORRECTION- CROSS SECTION

After:

(1) Evaluation of master integrals $I(1,0,0,1,1)$ and $I(1,0,0,1,2)$,
2 Taking the imaginary part of the amplitude
(3) Regularization of the amplitude we get the following correction to the amplitude:

ThE CONCLUSIONS

- The cross section at tree level via direct method and optical theorem has been calculated

THE CONCLUSIONS

- The cross section at tree level via direct method and optical theorem has been calculated
- The method of IBP relations and differential equations was used in order to calculate the master integrals

THE CONCLUSIONS

- The cross section at tree level via direct method and optical theorem has been calculated
- The method of IBP relations and differential equations was used in order to calculate the master integrals
- The NLO correction to the total cross section has been evaluated using optical theorem

THE CONCLUSIONS

- The cross section at tree level via direct method and optical theorem has been calculated
- The method of IBP relations and differential equations was used in order to calculate the master integrals
- The NLO correction to the total cross section has been evaluated using optical theorem
- The correction is not big, but it's meaningful for experimental tests of the Standard Model

THE CONCLUSIONS

- The cross section at tree level via direct method and optical theorem has been calculated
- The method of IBP relations and differential equations was used in order to calculate the master integrals
- The NLO correction to the total cross section has been evaluated using optical theorem
- The correction is not big, but it's meaningful for experimental tests of the Standard Model

THANK YOU FOR YOUR ATTENTION

