Percival: a CMOS Imager for Photon Science

Alessandro Marras

on behalf of the DESY FS-DS group

and of the Percival collaboration

The Percival collaboration & support

The Percivallians:

H. Graafsma, C.B. Wunderer, A. Marras, J. Correa, P. Goettlicher, S. Lange, I. Shevyakov, S. Smoljanin, H. Hirsemann, Q. Xia, M. Zimmer, S. Reza

D. Das, N. Guerrini, B. Marsh, I. Sedgwick, R. Turchetta,

G. Cautero, D. Giuressi, A. Khromova, R. Menk, L. Stebel, G. Pinaroli

U. Pedersen, N. Rees, N. Tartoni, H. Yousef

H. Hyun, K. Kim, S. Rah

Beamline(s) support:

P04 (Petra III):
S. Klump, F. Scholz, J. Seltmann, J. Viefhaus *Twinmic, Cipo (Elettra)*:
A. Gianoncelli

N. Zema, S. Rinaldi, D. Catone

I10 (DLS): P. Steadman, M. Sussmuth

BL2 (Flash): S. Toleikis, S. Duesterer

Motivation

The PERCIVAL prototype

Monolithic Active Pixel Sensor

Monolithic: Collecting diodes & readout circuitry share the same substrate TowerJazz 0.18um CMOS techn, over high-resistance thick epi Coupled to handling wafer, back-thinned, back-illuminated: 100% fill factor Back surface delta-doped, post-processed: almost no entrance window

P^ERCIVAL

delta-doping of back-surface

The PERCIVAL core

signal (+2 sel. bits)

PERCIVAL

Lateral Overflow

PERCIVAL

Lateral Overflow, dynamic range: test results

dyn. range: 3.5Me ~ 50k photons @ 250eV

single pulse imaging @ FEL: test results

50

row [pixels] 001

150

200

P^ERCIVAL

Low-Energy photons: test results

Summary

P.E.R.C.I.V.A.L.

(Pixellated Energy-Resolving Cmos Imager Versatile And Large)

tests on prototypes

- ✓ Lateral Overflow
- ✓ low noise (~15e)
- ✓ high dynamic range (3.5Me 50k ph.)
- ✓ up to 120 frame/s
 - ✓ compatible most FEL
- ✓ tested 92eV-2KeV
- ✓ measured CCE (125-400eV)

P2M

- ✓ 2M pixels
- ✓ ~4×4cm² sensible area
- ✓ no gaps or blind
- ✓ 2-side buttable
- ✓ 27um pixel pitch
- ✓ manuf. ~spring 2016, postproc. ~end of 2016

P13M

- ✓ 13M pixels
- √~10×10cm² sensible area

Summary

backup

The PERCIVAL prototype

Temperature effects

noise analysis

Dynamic range

response to low-Energy photons

1500

inhola diffraction (Fe/A'Oaly, deSur

keV-Energy photons: test results

measurements at P04 beamline (Petra III)

CFEL

SCIENCE

TS3 tests

- PLL: Operating up to 400MHz
- LVDS Stages: Operating at 800Mbits/s (limited by DAQ system)

Motivation

Outline

Percival:

- why do we do it
- how do we do it
- what's special about it
 - the full system
 - the prototypes
 - lateral overflow

Percival performance

- dynamic range
- noise
- speed
- response to low energy photons
- FEL compatibility
- CCE
- Conclusions

