Achievements and Perspectives of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices

M. Winter (PICSEL team IPHC-Strasbourg)

KIT / 10 March 2016

Contents

- Primordial motivations & main features of CMOS sensors
- 1st architecture developped state of the art
 - MIMOSA-26 (EUDET chip applications) \mapsto MIMOSA-28 (STAR-PXL)
- Extension towards more demanding experiments
 - ALICE-ITS & -MFT CBM-MVD ILC
- Perspectives for HEP + X-Ray imaging & forthcoming challenges
 - read-out speed & rad. tolerance
 architectures & emerging CMOS technologies
- Conclusion

SOURCES : Talks at CPIX-14 + VERTEX-14/15 + FEE-14 + TWEPP-13/14/15 + LHCC/ALICE + VCI-2016

SLIDES : M.Deveaux, D. Doehring, L.Greiner, Ch.Hu-Guo, M.Keil, M.Mager, L.Musa, F.Morel, F.Reidt, W.Snoeys, G. Aglieri, ...

Motivation for Developing CMOS Sensors

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit much milder running conditions than pp/LHC
 - \Rightarrow Relaxed speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
 - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, ...
 - e^+e^- collisions : ILC, BES-3, ...
 - Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...
 - High precision beam telescopes adapted to medium/low energy electron beams :
 - \hookrightarrow few μm resolution achievable on DUT with EUDET-BT (DESY), **BTF-BT (Frascati)**, ...

Quadrature of the

Charged Particle Detection with THIN & HIGHLY GRANULAR Sensors

- DISPLACED VERTEX RECONSTRUCTION AND CHARACTERISATION :
 - reconstruction of collision point
 - reconstruction of D-meson and τ -lepton vertices
 - reconstruction of b-quark decays in (top-quark) jets
 - determination of displaced vertex electrical charge
 - etc.
- ROLE IN THE TRACKING :
 - track seeding (depending on main tracker)
 - low P_t track reconstruction
 - track momentum determination (in particular low P_t)
 - fake tracks mitigation (E_{miss} determination)

Example of Application : ILC Vertex Detector

• Goal : $\sigma_{sp}\lesssim$ 3 μm in both directions with \lesssim 0.15 % X $_0$ / layer (2-sided layers ?)

Example of Application : Upgrade of ALICE-ITS

- ALICE Inner Tracking System (ITS) foreseen to be replaced during LS2/LHC
 - \rightarrow higher luminosity (\equiv collision rate), improved charm tagging
- Expected improvement in pointing resolution and tracking efficiency

Long Term R&D

- R&D activity of CPS initiated in 1999 for future subatomic physics experiments
- First contact for STAR PXL took place in Year 2000 during the workshop Vertex-2000

CMOS Pixel Sensors: Main Features

- Prominent features of CMOS pixel sensors :
 - high granularity \Rightarrow excellent (micronic) spatial resolution
 - $_\circ\,$ signal generated in (very) thin (15-40 μm) epitaxial layer
 - $\hookrightarrow\,$ resistivity may be \gg 1 k $\Omega\cdot cm$
 - $_\circ\,$ signal processing $\mu\text{-circuits}$ integrated on sensor substrate
 - \Rightarrow impact on downstream electronics and syst. integration (\Rightarrow cost)
- CMOS pixel sensor technology has the highest potential :
- ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
 - → manufacturing param. not optimised for particle detection:
 wafer/EPI characteristics, feature size, N(ML), ...

Twin-Well passivation oxide p-epi p++ substrate recombination

Quadruple-Well

- Read-out architectures :
 - 1st generation : rolling shutter (synchronous) with analog pixel output (end-of-column discri.)
 - 2nd generation : rolling shutter (synchronous) with in-pixel discrimination
 - 3rd generation : data driven (asynchronous) with in-pixel discrimination

11

Role of the Epitaxial Layer

- Main influences : $Q_{signal} \sim$ EPI thickness and doping profile
 - $\circ \epsilon_{det}$ depends on depletion depth vs EPI thickness
 - NI radiation tolerance depends on depletion depth vs EPI thickness
 - $_\circ\,$ Cluster multiplicity and σ_{sp} depend on pixel pitch / EPI thickness
- Case dependent optimisation mandatory :
 - Deep depletion \Rightarrow higher SNR (seed pixel) \Rightarrow improved ϵ_{det} but degraded spatial resolution
 - Spatial resolution depends on Nb of bits encoding charge vs pixel pitch ...
 - Density of in-pixel circuitry depends on CMOS process options : feature size, Nb(ML), twin/quadruple-well, ...

Measured Spatial Resolution

- Several parametres govern the spatial resolution :
 - pixel pitch
 - epitaxial layer thickness and resistivity
 - sensing node geometry & electrical properties
 - \hookrightarrow cluster charge sharing between pixels
 - signal encoding resolution

 $\Rightarrow \sigma_{sp}$ fct of pitch \oplus SNR \oplus charge sharing \oplus ADCu, ...

• Impact of pixel pitch (analog output) : $\sigma_{f sp}\sim {f 1}~\mu{f m}$ (10 μm pitch) $ightarrow~\lesssim {f 3}~\mu{f m}$ (40 μm pitch)

pitch (microns)

9 10

Threshold (S/N)

8

Impact of charge encoding resolution : diai

ex. of 20 μm pitch $\Rightarrow~\sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1	
Data	measured	reprocessed	measured	
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm	

Mimosa resolution vs pitch

Spatial resolution vs Cluster Dimensions

- Correlation between σ_{sp} & cluster hit multiplicity following from :
 - pixel dimensions vs epitaxy characteristics * (thickness, resistivity, doping profile)
 - sensing node pattern (density, staggering, geometry) *
 - depletion voltage *

* . . .

7

≥9

Cluster multiplicity

14

Sensing Node & VFEE Optimisation

- General remarks on sensing diode :
 - $_{\circ}$ should be small because : V $_{signal}$ = Q $_{coll}$ /C ; Noise \sim C ; G $_{PA}$ \sim 1/C
 - $_{\circ}\,$ BUT should not be too small since Q $_{coll} \sim$ CCE (important against NI irradiation)
- General remarks on pre-amplifier connected to sensing diode :
 - should offer high enough gain to mitigate downstream noise contributions
 - should feature input transistor with minimal noise (incl. RTS)
 - should be very close to sensing diode (minimise line C)
- General remarks on depletion voltage :
 - $_{\circ}\,$ apply highest possible voltage on sensing diode preserving charge sharing $\mapsto \sigma_{sv}$
 - alternative : backside/reverse biasing

⇒ Multiparametric trade-off to be found, based on exploratory prototypes rather than on simulations

Charge Sensing Element \mapsto Optimal SNR

• Influence of sensing diode area

• Benefit from reducing the sensing diode area

 $_\circ~$ sensing diode cross-section varied from 10.9 μm^2 to 8 μm^2 underneath 10.9 μm^2 large footprint

 \rightarrow suppresses low SNR tail \mapsto enhances detection efficiency (and mitigates effect of fake rate)

Main Components of the Signal Processing Chain

- Typical components of read-out chain :
 - AMP : In-pixel low noise pre-amplifier
 - Filter : In-pixel filter
 - **ADC** : Analog-to-Digital Conversion : 1-bit \equiv discriminator
 - \longrightarrow may be implemented at column or pixel level
 - Zero suppression : Only hit pixel information is retained and transfered
 - \longrightarrow implemented at sensor periphery (usual) or inside pixel array
 - Data transmission : O(Gbits/s) link implemented on sensor periphery
- Read-Out alternatives :
 - Synchronous: rolling shutter architecture
 Asynchronous: data driven architecture
- Rolling shutter : best approach for twin-well processes
 - \rightarrow trade-off between performance, design complexity, pixel dimensions, power, ...

 \hookrightarrow MIMOSA-26 (EUDET), MIMOSA-28 (STAR), ...

Speed vs Pixel Dimensions

- Pixel dimensions govern the spatial resolution at the expense of read-out speed
 - \Rightarrow Trade-off to be found specific to each application

Pixel pitch	$<$ 10 μm	\gtrsim 15 μm	$>$ 20 μm	\gtrsim 25 μm	\lesssim 50 μm	
Nb(T)	2–3	15	\gtrsim 50	\gtrsim 200	HV: few 10^2	
σ_{sp} [μm]	\lesssim 1x1	< 3x3	< 5x5	\lesssim 5x5	\gtrsim 10x10	
Δt [μs]	10 ³	\lesssim 30/200	\gtrsim 10-15	< 10	10^{-2}	
Pre-Amp+Filter	Out	In-Pix	In-Pix	In-Pix	In-Pix	
Discrimination	Out	Out	In-Pix	In-Pix	In-Pix	
Sparsification	Out	Out	Out	In-Pix	In-Pix	
Ex.(chip)	Mimosa-18	ULTIMATE/MISTRAL	ASTRAL	ALPIDE	HV-CMOS	
Depleted	No	No	No	Yes	YES	
CMOS Process	AMS-0.35	AMS-0.35/Tower-0.18	S-0.35/Tower-0.18 Tower-0.18		AMS-0.35/0.18	
Ex.(appli.)	Beam Tele.	STAR-PXL/ALICE-ITS	ALICE-ITS	ALICE-ITS	LHC ?	

STATE OF THE ART

RUNNING INSTRUMENTS

EQUIPPED WITH CPS

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA-26 sensor equipping EUDET BT :
 - $_{\circ}~$ 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - $_{\odot}\,$ column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by $\ensuremath{\emptyset}$
 - binary charge encoding
 - active area: 1152 columns of 576 pixels ($21.2 \times 10.6 \text{ mm}^2$)
 - $_{\circ}\,$ pitch: 18.4 $\mu m
 ightarrow \, \sim$ 0.7 million pixels
 - hinspace charge sharing $\Rightarrow~\sigma_{sp}$ \sim 3.-3.5 μm
 - $_{\circ}~~{
 m t}_{r.o.}\lesssim$ 100 μs (\sim 10 4 frames/s)
 - \hookrightarrow suited to >10⁶ part./cm²/s
 - JTAG programmable
 - rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)
 - $_{\circ}~$ thinned to 50 μm (yield \sim 90 %)

• Various applications : VD demonstrators, NA63, NA61, FIRST, oncotherapy, dosimetry, ...

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - $\circ~$ 0.35 μm process with high-resistivity epitaxial layer
 - column // architecture with in-pixel cDS & amplification
 - end-of-column discrimination & binary charge encoding
 - on-chip zero-suppression
 - $_{\circ}\,$ active area: 960 colums of 928 pixels (19.9imes19.2 mm 2)
 - pitch: 20.7 μm → ~ 0.9 million pixels
 → charge sharing ⇒ $\sigma_{sp} \gtrsim$ 3.5 μm
 - JTAG programmable
 - $t_{r.o.} \lesssim$ 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - 2 outputs at 160 MHz
 - $_{\circ}~\lesssim$ 150 mW/cm 2 power consumption
- \triangleright \triangleright \triangleright Sensors FULLY evaluated/validated : (50 μ m thin)
 - \circ N \leq 15 e⁻ENC at 30-35°C
 - $\circ \ \epsilon_{det}$, fake & σ_{sp} as expected
 - $\,\circ\,$ Rad. tol. validated (3.10 $^{12}{\rm n}_{eq}/{\rm cm}^2$ & 150 kRad at 30 $^{\circ}{\rm C}$)
 - All specifications were met \Rightarrow 2 detectors of 40 ladders constructed

 $\triangleright \triangleright \triangleright$ Physics data taking since March 2014 \mapsto measured $\sigma_{ip}(p_T)$ match requirements

Mimosa 28 - epi 20 um - NC

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Next Generations of High Precision Tracking & Vertexing Sub-Systems

Next Generations of High Precision Tracking & Vertexing Sub-Systems

call for FASTER and MORE RADIATION TOLERANT

CMOS Pixel Sensors (CPS)

Forthcoming Device : New ALICE Inner Tracking System

$$\sigma_{sp}\lesssim$$
 5 μm

 \simeq 0.3 % X $_0$ / layer

Upgrade of ALICE-ITS at LHC

7 layers, > 10 m² active area with \gg 10⁴ CPS

Next Forthcoming Device : CBM Micro-Vertex Detector

CBM-MVD at FAIR/GSI : 3-4 (2-sided) stations in vacuum at T < 0°C

 $\mapsto \sigma_{sp} \lesssim$ 5 μm , \lesssim 0.5 % X₀/station

Device under Study : ILC Vertex Detector

3 (2-sided) layers : CPS \equiv option $\mapsto \sigma_{sp} \lesssim$ 3 μm , \lesssim 0.3 % X₀/layer

Next Challenge : ALICE-ITS Upgrade

- Upgrade of ITS entirely based on CPS :
 - Present geometry: 6 layers
 HPS x 2 / Si-drift x 2 / Si-strips x 2
 - ∘ Future geometry : 7 layers \mapsto \mapsto \vdash all with CPS (~ 25-30 · 10³ chips) \Rightarrow 1st large tracker (10 m²) using CPS
 - ITS-TDR approved March 2014 :

Pub. in J.Phys. G41 (2014) 087002

Requirements for ITS inner and outer barrels compared to specifications of STAR-PXL chip :

	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm 2	$0.15~\mathrm{m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	4·10 11 n $_{eq}$ /cm 2	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

 \Rightarrow 0.35 μm CMOS process (STAR-PXL) marginally suited to read-out speed & radiation tol.

CMOS Process Transition : STAR-PXL \mapsto **ALICE-ITS**

<u>Twin well process: 0.6-0.35 μm</u>

 Use of PMOS in pixel array is not allowed because any additional N-well used to host PMOS would compete for charge collection with the sensing N-well diode VNH

- here are a strategy by the strategy by the strategy here are an are strategy to the strategy by the strategy strategy are strategy as a strategy strategy are strategy as a strategy strategy are strategy as a stra
- Section Already demonstrate excellent performances
 - STAR PXL detector: MIMOSA28 are designed in this AMS-0.35 μm process
 - $\checkmark \epsilon_{eff} > 99.5\%, \sigma < 4 \,\mu m$
 - 1st CPS based VX detector at a collider experiment

- Quadruple well process (deep P-well): 0.18 μm
 - N-well used to host PMOS transistors is shielded by deep P-well
 - 🗞 Both types of transistors can be used

- % Widens choice of readout architecture strategies
 - Ex. ALICE ITS upgrade: 2 sensors R&D in // using TOWER CIS 0.18 μm process (quadruple well)
 - Synchronous Readout R&D:
 - proven architecture = safety
 - Asynchronous Readout R&D: challenging

ITS Pixel Sensor : Two Architectures

Power consumption Insensitive area

< 50mW/cm 2 \sim 1mm x 30mm **Power consumption Insensitive area**

 \lesssim 90mW/cm 2 1.5mm x 30mm

- Both chips have identical dim. (15mm x 30 mm) as well as physical and electrical interfaces:
 - position of interface pads *

* electrical signaling

* steering, read-out, ... protocoles

Synchronous Read-Out Architecture : Rolling Shutter Mode

Design addresses 3 issues:

- ✤ Increasing S/N at pixel-level
- - at pixel-level (ASTRAL)
- ✤ Zero suppression (SUZE) at chip edge level

Window of 4x5 pixels

- Power vs speed:
 - Solution Power: only the selected rows (N=1, 2, ...) to be read out
 - Speed: N rows of pixels are read out in //
 - Integration time = frame readout time

$$t_{\rm int} = \frac{\left(Row \ readout \ time\right) \times \left(No. \ of \ Rows\right)}{N}$$

Sensor Development Organisation

Main Features of the Final Prototypes

- Full scale sensor building block :
 - $_{*}\,$ complete (fast) read-out chain \simeq ULTIMATE
 - $_{*}\,$ pixel area (\sim 1 cm $^{2})$ \simeq area of final building block
 - * same nb of pixels (160,000) than complete final tracker chip
 - $_{*}\,$ fabricated with 18 μ m thick high-resistivity EPI
 - $_{\ast}~$ BUT : pixels are small (22 x 32.5 μm^2) and sparsification circuitry is oversized (power !)
 - * Tested at DESY (few GeV e⁻) in June'15 and CERN-SPS (120 GeV "pions") in Oct. '15
- Large-pixel prototype without sparsification :
 - * 2 slightly different large pixels : $\circ~$ 36.0 μm x 62.5 μm $\circ~$ 39.0 μm x 50.8 μm
 - * pads over pixels (3 ML used for in-pixel circuitry)
 - $\ast\,$ fabricated with 18 $\mu{\rm m}$ thick high-resistivity EPI
 - $_{*}\,$ BUT : only \lesssim 10 mm 2 , 4,000 pixels, no sparsification
 - \ast Tested in Frascati (450 MeV e⁻) in March & May'15

Detection Performances of the Final Prototypes

- Full scale sensor building block :
 - $_{*}\,$ complete (fast) read-out chain \simeq ULTIMATE
 - $_{*}\,$ pixel area (\sim 1 cm 2) \simeq area of final building block
 - * same nb of pixels (160,000) than complete final tracker chip
 - $_{*}\,$ fabricated with 18 μ m thick high-resistivity EPI
 - $_{\ast}~$ BUT : pixels are small (22 x 32.5 $\mu m^2)$ and sparsification circuitry is oversized (power !)
 - * Tested at DESY (few GeV e⁻) in June'15 and CERN-SPS (120 GeV "pions") in Oct. '15
- Large-pixel prototype without sparsification :

* 2 slightly different large pixels : • 36.0 μ m x 62.5 μ m • 39.0 μ m x 50.8 μ m

- * pads over pixels (3 ML used for in-pixel circuitry)
- * fabricated with 18 μ m thick high-resistivity EPI
- $_{*}~$ BUT : only \lesssim 10 mm 2 , 4,000 pixels, no sparsification
- \ast Tested in Frascati (450 MeV e⁻) in March & May'15

N. of 4x2 windows to cover cluster.

Final Sensor : MISTRAL-O

- Combination of 4 FSBBs with MIMOSA-22THRb7 pixels
- Main characteristics :
 - * chip dimensions : 15 mm x 30 mm
 - * Sensitive area = 13.50 mm x 29.95 mm
 - \hookrightarrow 1.5 mm wide side band (evolving towards \sim 1 mm)
 - * 832 columns of 208 pixels (1.6 10⁵ pixels)
 - $_{*}\,$ pixel dimensions : 36 μm x 65 μm
 - * in-pixel pre-amp & clamping (fringe capa)
 - * end-of-column signal discrimination
 - * discriminators' output sparsification
 - # fully programmable control circuitry

*

- pads over pixel array * possibility to mask noisy pixels
- Typical performances : (based on FSBB and MIMOSA-22THRb7 beam tests)
 - $_{*}\,$ read-out time \sim 20 μs $_{*}\,$ spatial resolution \sim 10 μm $_{*}\,$ power density \lesssim 90 mW/cm $^{2}\,$
 - $_{*}~$ radiation tolerance > 1.5 $\cdot 10^{12} n_{eq}/cm^{2}$ and 150 kRad at T > 30 $^{\circ}{\rm C}$

Asynchronous Read-Out Architecture : ALPIDE (Alice Plxel DEtector)

- Design concept similar to hybrid pixel read-out architecture exploiting availability of TJsc CIS quadruple well process : pixel hosts N- & P-MOS transistors
- Each pixel features a continuously power active
 - low power consumming analogue front end (P < 50 nW/pixel)
 based on a single stage amplifier with shaping / current comparator
 - amplification gain \sim 100
 - shaping time \sim few μs
 - Data driven read-out of the pixel matrix
 - \Rightarrow only zero-suppressed data are transfered to periphery

Asynchronous Read-Out Architecture : ALPIDE

ALPIDE Detection Performance Assessment

- ALPIDE-2 beam tests :
 - $_{\circ}~$ Final sensor dimensions : 15 mm \times 30 mm
 - $_\circ~$ About 0.5 M pixels of 27 $\mu m imes$ 29 μm
 - Various sensing node geometries studied
 - Substrate reverse biased for the sake of SNR
 - ←→ default : 6 V

epi= $25 \,\mu$ m, spacing = $2 \,\mu$ m, V_{BB}= -6V

• Possibility to mask pixels (fake rate mitigation) \hookrightarrow default : $\leq O(10^{-3})$ masked pixels

Fake-Hit Rate/Pixel/Event Detection Efficiency 0.995 10-2 10^{-3} 0.99 0.985 10-4 10-5 0.98F Efficiency Fake-Hit Rate 10-6 0.975 Non-irradiated 10⁻⁷ 1.0×10¹³ 1MeV n_{ec}/cm² 0.97 0.965 10-8 10⁻⁹ 0.96 10-10 0 955 pixels masked 10^{-11} 0.95 600 800 900 1000 300 400 700 200 Threshold Current I_{THR} (pA) Nominal threshold setting $I_{THR} = 500 \text{ pA}$

41

Radiation Tolerance

Forthcoming Challenges

How to reach the bottom right corner of the "Quadrature"?

Improving Speed and Radiation Tolerance

O(10 2) μs

How to improve speed & radiation tolerance while preserving 3-5 μm precision & < 0.1% X₀ ?

O(10) μs

O(1) μs

EUDET/STAR

2010/14

 $\rightarrow \rightarrow \rightarrow$

ALICE/CBM 2015/2019 \rightarrow

Enhancing the Epitaxial Layer Depletion

- Motivations for High Energy Physics :
 - Tolerance to Non-Ionising radiation
 - Charge collection speed
 - \Rightarrow integration time $\ll \mu s$

- Motivations for X-Ray detection :
 - Thickness of sensitive vol. (Beer-Lambert law)
 - Uniformity of det. prop. across sensitive area

- Alternative top-down (\equiv reverse) biasing approaches :
 - Electrode voltage
 Ex: ALPIDE: P+ wells
 - Sensing diode potential
 - ⇒ decoupled from Pre-Amp (see next slides)

Epitaxial Layer Depletion via Sensing Diode

- Pegasus-2 sensor:
 - Tower-Jazz 0.18 CIS process
 - $_\circ~$ 56 x 8 pixels (25 μm pitch)
 - $_\circ\,$ Epitaxy: 18 μm , 1 k $\Omega \cdot cm$ predominantly depleted
 - $_{\circ}~$ TN \simeq 16 \pm 1 e⁻ENC at 10 $^{\circ}$ C

CONCLUSION

- CPS based on rolling shutter r.o. (mainly AMS-0.35 process) now in use for several years:
 - Beam Telescopes providing precision tests on multi-GeV \mapsto sub-GeV e^{\pm} beams (DESY, LNF)
 - Vertex detectors providing unprecedented flavour tagging capabilities (STAR-PXL, FIRST)
 - Various spin-offs
- Tower-Jazz 0.18 μm CIS technology now under control :
 - Techno. validated for charged particle detection with full custom epitaxy (thickness, resistivity)
 - \circ STAR-PXL chip successfuly translated: 2-4 times faster & \gtrsim 10 times more rad. tolerant
 - New, asynchronous r.o., CPS progressing rapidly towards < 10 μs (active depletion)
 - 1st large (10 m²) pixelated tracker (ALICE-ITS) soon starting construction (25,000 CPS)
- Perspectives:
 - few μs read-out CPS for CBM expt at FAIR and ILC in Japan
 - depleted epitaxy CPS for low energy X-Ray imaging based on photon counting
 - beta-imaging based on counting

Tolerance to Ionising Radiation

0,005 Gate length=180nm Threshold [V] w=10µm Studies of 0.18 μm transistors exposed to TID \geq 10 MRad -0.005 -0.0 • measurements performed $(+20^{\circ}C)$: After 24h -0.015 thermal leakage current & threshold shift -0.02w<1um annealing -0.025 increase of leakage current remains small -0.03 -0.035 $_{\circ}\,$ threshold shifts remain small if W $\gtrsim 2 \mu m$ -0.04 and are recoverable with thermal annealing -0.045 10² 10³ 10⁴ TiD [kRad] ^{10⁵} 0.30 30 Studies of sensing node in 0.18 μm process at +20°C : -Gain [ADU/e] Measured noise [ADU] 27 -A-ENC [e] 0.25 24 • Pixel gain drops > 5 MRad (threshold shift ?) Measured noise [ADU] 21 0.20 (aju [ADN/e] 0.10 Noise [e ENC] → but SNR seems acceptable up to 10 MRad 3 18 15 $_{\circ}$ Well known remedies seem efficient up to \gtrsim 10 MRad : -12 -9 Pixel gain drops short integration time, low temperature, ELT with guard rings -6 Threshold shift? 0.05 T=+20°C - 3 Potential conflict : space available in high resolution pixels MIMOSA-32-P2 +20°C 0.00 LO 3 0 10 Dose [Mrad]

Tolerance to Non-Ionising Radiation

- Main parametres governing the tolerance to NI radiation :
 - epitaxial layer : thickness and resistivity
 - sensing node : density, geometry, capacitance, depletion voltage
 - operating temperature
 - read-out integration time
- Most measurements performed with chips manufactured in two CMOS processes :
 - $\circ~$ 0.35 μm with low & high resistivity epitaxy
 - $_{\circ}~$ 0.18 μm with high & resistivity epitaxy (mainly 18 & 20 μm thick)

Pitch_{eff} [µm] = Sqrt(pixel surface)

- Clear improvement with 0.18 μm process w.r.t. 0.35 μm process
 - ALICE-ITS requirement seems fulfiled : 2.7 MRad & $1.7 \cdot 10^{13} n_{eq}/cm^2$ at T = +30°C
 - $_{\rm o}\,$ Fluences in excess of 10 $^{14}{\rm n}_{eq}/{\rm cm}^2$ seem within reach
 - \Rightarrow requires global optimisation of design & running parametres

ALPIDE Detection Performance Assessment

- ALPIDE-1 beam tests (5–7 GeV pions) :
 - $_{\circ}~$ Final sensor dimensions : 15 mm \times 30 mm
 - $_\circ~$ About 0.5 M pixels of 28 $\mu m imes$ 28 μm
 - 4 different sensing node geometries
 - Possibility to reverse bias the substrate
 - ←→ default : 3 V
 - Possibility to mask pixels (fake rate mitigation) \hookrightarrow default : $\leq O(10^{-3})$ masked pixels

Extrapolation to ILC Trackers

- ALICE-ITS CONCEPT :
 - * Cylindrical geometry based on 7 concentric single-sided layers
 - * Outer Barrel (4 layers; 10 m²) serves as a tracker
 - * All layers equipped with CMOS Pixel Sensors (CPS)
 - * Baseline sensor (ALPIDE) : 5 μm & 4 μs (not yet validated on detector ladder)
 - $_{*}$ Outer Barrel material budget \lesssim 1% X $_{0}$ /layer
 - $_{*}$ Stave length up to \sim 1.5 m
- CPS FOR DOUBLE-SIDED TRACKER LAYERS ACHIEVABLE WITH PRESENT KNOWLEDGE :
 - * transposing the ITS concept to an ILC exp. allows for 5 μm resolution and 4 μs read-out time
 - * alternative : use ITS sensor (5 μm & 4 μs) on one ladder side and a faster (time stamping) version based on elongated pixels on the other side : \sim 1 μs seems achievable (tbc)

Noria Based CPS Architecture for (ILC) Single Bunch Identification

Further Perspectives of Performance Improvement

- Expected added value of HV-CMOS :
 - Benefits from extended sensitive volume depletion :
 - faster charge collection
 - higher radiation tolerance
 - Not bound to CMOS processes using epitaxial wafers
 - \Rightarrow easier access to VDSM (< 100 nm) processes
 - \Rightarrow higher in-pixel micro-circuit density
- Questions : minimal pixel dimensions vs $\sigma_{sp} \lesssim$ 3 μm ?
 - uniformity of large pixel array, yield ?
- Attractive possible evolution : 2-tier chips
 - signal sensing & processing functionnalities distributed over 2 tiers interconnected at pixel level (capa. coupling)
 - combine 2 different CMOS processes if advantageous :
 - 1 optimal for sensing, 1 optimal for signal processing
 - benefit : small pixel \mapsto resolution, fast response,

data compression, robustness ?

• challenge : interconnection technology (reliability, cost, ...)

Ivan Peric: CPIX14, Bonn, 2014