Radiation Damage in Weightfiled2

Three main effects of radiation damage on silicon sensors have been observed:

- Change of the effective doping concentration
- Increase of leakage current
- Decrease of charge collection efficiency

For what concerns **Weightfield2**, the main changes to be implemented are:

- A reduction in the current signal (due to carrier trapping)
- A no longer linear E field (due to non uniformity of Neff)

So far just the first one has been addressed.

For the second point, I'm investigating how to model the quadratic E field observed due to the double junction effects.

A Model for Carrier Trapping

The starting point is that the decrease in the current due to trapping is considered exponential [1],[2],[3]:

 $I(t) = I_0 \exp(-t/\tau_{EFF})$

where τ_{EFF} is the effective trapping time, and it's considered inversely proportional the fluence φ :

$1/\tau_{EFF} = \beta \phi$

where β is an experimentally determined parameter expressed in cm^2/ns, which is temperature dependent (T₀ = 263K): $\beta(T) = \beta(T_0)^*(T/T_0)^K$

Thus a carrier gets trapped with probability per unit time: $P(trapping) = 1-exp(-\beta\phi)$

Implementation in Weightfield2

A window has been added to the GUI to input the fluence

At each time step, every carrier has a probability of being trapped that is calculated from the input fluence and values of β and κ taken from [1]:

- β(electrons) = 4.1 ± 0.1 * 10^-16 cm^2/ns
- β (holes) = 6 ± 0.2 * 10^-16 cm^2/ns
- K(electrons) = -0.86 ± 0.06
- K(holes) = -1.52 ± 0.07 Bianca Baldassarri, CERN Summer Student 2015

<u>300 µm, No Gain:</u>

Simulated Current for Different Fluences

Signal produced by a MIP in an n in p Sipad irradiated at different fluences (300µm, Vdepl(at fluence = 0) = 40V, Vbias = 800V, T = 300K)

300µm, No Gain:

<u>300µm, Gain = 10:</u>

Simulated Current for Different Fluences

<u>300µm, Gain = 10:</u>

Signal Components

<u>300µm, Gain = 10:</u>

<u>50 μm, No Gain:</u>

Simulated Current for Different Fluences

Signal produced by a MIP in an n in p Sipad irradiated at different fluences (50µm, Vdepl(at fluence = 0) = 40V, Vbias = 800V, T = 300K)

50µm, No Gain

<u>50µm, Gain = 10:</u>

Simulated Current for Different Fluences

Signal produced by a MIP in an n in p Sipad irradiated at different fluences (50µm, Vdepl(at fluence = 0) = 40V, Vbias = 800V, T = 300K) **Time [ns]** 1 0 0.0 0.8 0.2 0.4 0.6 0.0 -1.0 -2.0 -3.0 Current [µA] -4.0 -4E+15 -5.0 **—**2E+15 **—**1E+15 -6.0 --6E+14 -7.0 ---6E+13 -8.0 -9.0

<u>50µm, Gain = 10</u>

Signal Components

Bianca Baldassarri, CERN Summer Student 2015

<u>50µm, Gain = 10</u>

Simulated Charge Collection Efficiency

as a function of Fluence

Dependance of the CCE of a Sipad on fluence

Bianca Baldassarri, CERN Summer Student 2015

Warnings and Side Notes

1. β is experimentally determined

- Various researches show different results (sometimes in contrast with each other [2],[3],[4]). The data from [1] were chosen being the most complete amongst the sources examined.
- The value is always determined for a limited fluence range (extension to other fluences might well be incorrect)
- Simulations with other values of β from different articles have been conducted without seeing significant differences in the results

2. Voltage dependant trapping:

- The CCE has been observed to increase with Vbias (even well above Vdepl)
- Attempt to model a voltage dependant trapping time [5]:

 $\tau_{EFF} = \tau_0 + \tau_1$ (Vbias-Vdepl)/100V

where τ_1 is again experimentally determined however the data is scarce

> The CCE correct dependence is most probably on E rather than on V

3. Differences in charged and neutral hadron irradiation :

- Charged hadrons produce only point defects while neutrons generate a large number of cluster defects
- The change in Neff is different, also with regards to type inversion [6],
 [7]
- \blacktriangleright Different values of β have also been observed, but again with no significant difference in the signal

4. Charge multiplication effects

At high fluences and high voltages the charge multiplication has been observed to improve, and even push CCE greater than 1 [8]

5. Change in carrier mobility:

- A dependence of the carrier mobility on fluence has been observed [9], really limited data has been found on the topic
- The parameterization from [9] has been implemented in the model with modest changes in the output, and has thus been discarded also because it covered only the electron mobility and not the hole mobility

References

- G. Kramberger, V. Cindro, I. Mandic, M. Mikuz, M. Zavrtanik, "Effective trapping time of electrons and holes in different silicon materials irradiated with neutrons, protons and pions", Nuclear Instruments and Methods in Physics Research A 481 (2002) 297–305
- 2 J. Lange , J.Becker, D.Eckstein, E.Fretwurst, R.Klanner, G.Lindstrom, "Charge collection studies of protonirradiated n- and p-type epitaxial silicon detectors", Nuclear Instruments and Methods in Physics Research A 624 (2010) 405–409
- ③ Jens Weber, Reiner Klingenberg, "Free Charge Carriers Trapping Properties in Neutron-Irradiated DOFZ Silicon Pad Detectors", IEEE Transactions On Nuclear Science, 54-6 (2007) 2071-2075
- (4) Olaf Krasel, Claus Gößling, Reiner Klingenberg, Silke Rajek, Renate Wunstorf, "Measurement of Trapping Time Constants in Proton-Irradiated Silicon Pad Detectors", , IEEE Transactions On Nuclear Science, 51-6 (2004) 3055-3062
- 5 J. Lange "Radiation Damage in Proton Irradiated Epitaxial Silicon Detectors", Physikalische Diplomarbeit, Universität Hamburg (2008), 73-74
- 6 A. Junkes, "Influence Of Radiation Induced Defect Clusters On Silicon Particle Detectors", Dissertation, , Universität Hamburg (2011), 125-132
- E. Fretwurst1, G. Lindstroem1, I. Pintilie1,2, J. Stahl1, "Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation", Invited talk presented at the 9th European Symposium on Semiconductor Detectors, Schloss Elmau, Germany (2002)
- 8 G. Casse "Charge Multiplication In Highly Irradiated Planar Silicon Sensors", Proceedings of Science (2010)
- I.V.Vaitkus, A.Mekys, V.Rumbauskas, J.Storasta, "Analysis Of Electron Mobility Dependence On Electron And Neutron Irradiation In Silicon"