
Common code for TCT

Sharing is caring

Hendrik Jansen

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 2

Why common code?
● We all start from same file format

→ Given by Particulars DAQ system

● A common framework saves a lot of time

● It makes results comparable

● Eases the usage for newcomers

● Write manual/twiki/... together → less work

● No re-invention of the wheel

● Use improvements from everyone

● User driven → implement what is needed by the
community

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 3

GitHub.com
● “GitHub is a Web-based Git repository hosting service.

It offers all of the distributed revision control and
source code management (SCM) functionality of Git as
well as adding its own features.”

● Git → Command line tool
for revision control

● GitHub → where the repo is

● Create a local copy,
develop a feature,
pull request → revision by owner of the repo,
accept pull request

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 4

CMake
● User CMake to create make files

● Makes framework platform independent

● Works on Unix, Windows, Mac!

● Easy inclusion of external libraries
(sort of ;))

- Include Particulars DAQ lib
- Include LeCroyReader lib
- Include ROOT

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 5

TCT analysis framework
● Compile (rather than running macros)

● Steer analysis using configuration files

● Get it from GitHub
https://github.com/DESY-FH-ELab/TCT-analysis

either: > git clone url
to get your local copy of the master and use it

or “fork” from the master to develop new features

https://github.com/DESY-FH-ELab/TCT-analysis

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 6

TCT analysis framework

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 7

Structure
● /build: build project from here

> cmake ..
> make install

● /src: where the code is

● /include: where the headers are

● /external: put external code/libraries here

● Two config-files, “sample card” and “analysis-card”:
1) For the sensor (sample name, width, doping, ...)
2) For the analysis (file format, optical axis, cuts, …)

→ Easy to share analysis without c&p macros
→ Re-do exact analysis with own data

● Output in ROOT files

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 8

/src
● Acquisition:

- Reads in the acqs from various formats
- knows what the scope knows:
 noise, amplitude, … of single acq

● Analysis:
- can filter single acqs
- finds signal, creates average
- reads analysis card

● Measurement:
- prepares vector of acqs for analysis

● Sample: helper class to read the sample card

● Scanning:
- Analysis of files from particulars DAQ
- Make use of lib from particulars

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 9

/src
● Acquisition:

- Reads in the acqs from various formats
- knows what the scope knows:
 noise, amplitude, … of single acq

● Analysis:
- can filter single acqs
- finds signal, creates average
- reads analysis card

● Measurement:
- prepares vector of acqs for analysis

● Sample: helper class to read the sample card

● Scanning:
- Analysis of files from particulars DAQ
- Make use of lib from particulars

For single acqs

For avg'ed acqs

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 10

Scanning

● Implement all “common scans” here

● Just include/exclude from analysis card

● No hard-coded values
→ Just add parameter to analysis card

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 11

Examples

06.10.15 | 1st TCT workshop 2015 | Hendrik Jansen 12

Conclusion
● Platform independent

● Easy to share/contribute to code

● Easy cross-check and re-doing of analysis of others

● No re-invention of the wheel for each group

● Mode for single acqs and avg'ed acqs

● First documentation already available
(summer student report)

