Charm Fragmentation Function with D*

<u>Shuangshi Fang</u> (DESY) Matthew Wing (UCL/DESY/UHH) (Sanjay Padhi (McGill))

Experiment-Theory Meeting on Charms, 8th August, 2008

Outline

Motivation

- Fragmentation models
- Event selection
- Fragmentation function
- Summary

Motivation

Charm production

- Charm quark pair production
- Development of parton showers
- Transition of partons to hadrons
- Unstable hadrons decay
- Why fragmentation ?
 - Non-perturbative process
 - phenomenological model
 - needs experimental study

Motivation

It describes the energy transferred from quark to a given meson
 e⁺e⁻ collisions
 z = E_{D*} /E_{beam}
 ep collisions
 the definition is not so simple

- IPS contributions, different kinematics
- the energy of c-quark is approximated by the energy of the reconstructed D* jet
- $z = (E + P_{||})_{D^*} / 2E_{jet}$

Fragmentation models

Data: 1996-2000, 120pb⁻¹
 Trigger
 FLT 42(1996-1997)/FLT42 or FLT 59(1998-2000)
 HPP01(1996-1997)/HFL01(1998-2000)
 DST 27
 No scattered electron in CAL

 $130 < W_{\gamma p} < 280 \text{ GeV}, \text{ } \text{Q}^2 < 1 \text{ GeV}^2$

$D^{\star\pm}$ selection

□ $P_T(\pi_s)$ >0.12 GeV, $P_T(\pi,K)$ >0.5 GeV □ $|\eta(\pi_s,K,\pi)|$ <1.75 □ 1.83 <M(D⁰)<1.9 GeV □ $P_T(D^*)/E_{\perp}^{\theta > 10^{\circ}}$ >0.1 □ 0.1435<M(D*)-M(D⁰) <0.1475 GeV

P_T(D*)>2GeV, |η_{D*}|<1.5

Jet Selection

□ k_T algorithm

 $\Box E_T^{jet} > 9 GeV$

□ |η^{jet}|<2.4

- Remove daughters of D*
- D* was sent as input to KT algorithm
- D* was traced until the final formation of jet
- Pick up the jet which contains D*

$$\sqrt{(\eta_{D^*} - \eta_{jet})^2 + (\phi_{D^*} - \phi_{jet})^2} < 0.6$$

□ Matching at hadron-level with k_T algorithm

- **Cuts on P_T(D^*)>2GeV and ETjet** >9 GeV can lead to a bias in the fragmentation observable as $z \sim p(D^*)/E_{iet}$
- □ As high as possible for E_T^{jet}
- **\Box** As low as possible for $P_T(D^*)$
- **z** distribution is unbiased above 0.22

MC fragmentation models

- PYTHIA: the Lund string model modified to Bowler for heavy quarks (default)
- PYTHIA: the Peterson fragmentation function
 HERWIG: a cluster model

D* Signal

ZEUS

• N_{D*} = 1268±56

Fragmentation Function

ZEUS

Events 200 • ZEUS (prel.) 1996-2000 PYTHIA HERWIG Fragmentation observable 400 **PYTHIA : Beauty** distribution 300 Ŧ PYTHIA6.1 seems to be better in describing data 200100 ŧ • 0 0.2 0.4 0.6 0.8 1

Comparison with PYTHIA simulation

- Compared with Symm.
 Lund + Bowler model
- The default value,r_Q=1,in PYTHIA gives a reasonable description of data
- The prediction deviates more and more from data as r_Q decreases

Comparison with PYTHIA simulation

ZEUS 1/σdσ/dz ZEUS(prel.)120 pb⁻¹ PYTHIA(ε=0.06) Extract parameter of PYTHIA(ε=0.1) PYTHIA(ε=0.01) Peterson in PYTHIA with minimum χ^2 method $\epsilon = 0.064 \pm 0.006^{+0.011}_{-0.008}$ The best value from fit is slightly larger than the default value 0.05 02 0.6 0.40.8

NLO QCD prediction is a fixed-order calculation from **FMNR** Renormalization and factorization scale: $m_T = \sqrt{\langle (p_T^c)^2 \rangle + m_c^2}$ Parton density function: CTEQ5M1 Photon parton density function: AFG-HO > To compare with data, NLO QCD calculation at parton level were corrected for effects of hadronization Hadronization correction factor:

$$C_{had} = d\sigma_{MC}^{hardrons} / d\sigma_{MC}^{partons}$$

- Parton(NLO calculation) to hadron corrections
- Different hadronisation models used

Bin	(PYTHIA+HERWIG)/2
0.16-0.30	1.70±0.15
0.30-0.44	1.42±0.28
0.44-0.58	1.18±0.18
0.58-0.72	1.05±0.09
0.72-0.86	0.97±0.04
0.86-1	1.20±0.01

- Extract parameter of Peterson function in NLO QCD calculation (FMNR)
- Hadronization correction for jet done
- $\varepsilon = 0.0721_{-0.0123}^{+0.0139}$
- The default value 0.035 is below the measured one
- Be used in future predictions

- Extract parameter of Kartvelishvili function in NLO QCD calculation (FMNR)
- Hadronization correction for jet done
- $\alpha = 2.87^{+0.33}_{-0.35}$

Comparison with other experiments

The data sets were normalized to 1/(bin width) for z>0.3
 Although different definitions, spectra similar in shape

Summary

- Fragmentation function for D* was measured in photoproduction regime
- Parameters of Peterson and Kartvelishvili functions were extracted
- Both of the fragmentation functions provide a reasonable description of data
- Although definitions are different, spectra similar in shape

Beijing Olympics Opening Ceremony

Dirk Werner Nowitzki

National Aquatics Center

Thank you !