Charm Fragmentation Function in DIS

Karin Daum - Wuppertal

Outline:

- Introduction into the problem
- Experimental method
- \cdot Extraction of the fragmentation parameters
- Discussion of results
- Conclusions

The problem of getting the observed fragmentation function in ep scattering

Measure observed fragmentation functions:

Definition in e⁺e⁻ is easy:

z(D*)=2 · E(D*)/√s

(includes gluon radiation)

More complicated in case of ep scattering:

How to get the energy of the parent charm quark? • via jet reconstruction draw back: only small region of phase space accessible •find a method which works at threshold and has similarities to e^+e^-

 \Rightarrow infer the non-perturbative FF from the observable

Fragmentation observable using jets

-Momentum of the charm quark approximated by a jet containing the D* meson

$$z_{jet} = \frac{(E+p_L)_{D^*}}{(E+p)_{jet}}$$

inclusive k_⊥ algorithm applied in the γp frame require: E_T(D*-jet)>3 GeV significant contribution only from ŝ > 100 GeV² (factor 10 above threshold)

Fragmentation observable - Hemisphere method

-Find an experimental setup close to e+e-

yp-system

-Take all particles going in the γ -direction

-Project onto the plane Perpendicular to the photon

-Get Thrust axis

-Sum momenta of all particles in the D* hemisphere

Perpendicular to the γ -direction

cut:n>0

- Charm quark momentum approximated by the D*hemisphere

$$z_{hem} = \frac{(E+p_L)_{D^*}}{(E+p)_{hem}}$$

- applicable also at charm production threshold $\hat{s} \approx 4m_c^2$

Fragmentation observable - Differences

- Hemisphere method should include more final state gluon radiation than jet method
- ⇒ Measured distributions of the fragmentation variable should be different
- Extracted parameters of the non-perturbative fragmentation function should agree (if QCD evolution understood)

Strategy of the Analysis

- Use both fragmentation observables in the common phase space by requiring the presence of a jet containing the D* with $E_{\rm T}\!\!>\!\!3~GeV$
- Extract parameters for non-perturbative fragmentation functions using RAPGAP, CASCADE and HVQDIS Parameters are expected:
 - to agree for the different observables
 - to be different for the MCs and HVQDIS
- See what happens close to threshold (absence of a D*-jet)

```
-RAPGAP & CASCADE: JETSET string fragmentation with "ALEPH" tuning,
i.e. D*s from excited D-mesons, (RAPGAP with resolved contribution)
-HVQDIS independent fragmentation in \gammap-frame
including p<sub>1</sub>(D*) w.r.t. the charm quark
```

Measurement of $z_{hem} \& z_{jet}$ with $E_T^{D^*-jet}>3GeV$

Jet method

Hemisphere method

- Distributions on hadron level look different (as expected)
- MC (Rapgap) with standard n.p. FF yield reasonable description of data

z_{jet}

Fit of n.p. FF parameters to $z_{hem} \& z_{jet}$ with $E_T^{D^*-jet}>3GeV$

Hemisphere method

Jet method

• Extracted n.p. FF parameters from z_{hem} (α =4.5±0.6) and z_{jet} (α =4.3±0.4) agree well

(Rapgap, ALEPH steering, Kartvilishvili)

Karin Daum

z_{hem} with $E_T^{D^*-jet}>3GeV$ vs. $W_{\gamma p}$

Hemisphere method

- Significant change of the z_{hem} distribution with $W\gamma p$
- Change well reproduced by Monte Carlo with α fixed. (similar conclusions for z_{jet})

$\Rightarrow \text{Parameter } \alpha \text{ of n.p. FF}$ independent of Wyp

(as expect if everything is well modeled and n.p. FF universal)

Fit of n.p. FF parameters to $z_{hem} \& z_{jet}$ with $E_T^{D^*-jet}>3GeV$

Hemisphere method Jet method 1/a da/dz_{je} 1/a da/dZ_{hem} H1 Preliminary H1 Preliminary H1 Data (jet sample) H1 Data (jet sample) 3.5 **HVQDIS** NLO a = 3.3 + 0.4NLD a = 3.8 + 0.3NLD a = 3.3 - 0.4 NLD a = 3.8 - 0.3 parton level 25 25 2 1.5 1.3 0.5 0.5 1.5 1.5 È È 0.5E 0.5 0.4 0.5 0.4 0.6 0.8 0.8 hem

• Extracted n.p. FF parameters from z_{hem} (α =3.3±0.4) and z_{jet} (α =3.3±0.3) agree well

(HVQDIS, independent fragmentation, Kartvilishvili)

Fit of n.p. FF parameters to z_{hem} -no D*-jet with E_T >3GeV

RAPGAP hadron level

• Extracted parameters of the 'non-jet' sample (α =10.3 $^{+1.7}_{-1.6}$) inconsistent with the parameters obtained for the jet-sample

(α=4.5±0.6)

Fragmentation at threshold is significantly harder than expected from the jet-sample (Events are quite empty – but not diffraction)

⇒there is a lack of understanding of fragmentation in the full phase space of charm production in epscattering

Experiment-Theory Meeting on Charm Physics

Fit of n.p. FF parameters to z_{hem} -no D*-jet with E_T >3GeV

HVQDIS parton level

- Extracted parameters of the
- 'non-jet' sample ($\alpha = 6.0 + 1.0 0.8$)

inconsistent with the parameters obtained for the jet-sample $(\alpha=3.3\pm0.4)$

HVQDIS yields a very poor description of the fragmentation observable close to threshold $(\chi^2/NDF=11 \text{ !!})$

Conclusions are the same as for RAPGAP (previous slide)

FF parameters - Results

- N.p. FF parameters extracted from the two observables agree within errors (Kartvilishvili better than Peterson)
- Parameters are model dependent
- Parameters of the jet (••) and non-jet samples (•) are always inconsistent

Discussion - I

- Obviously none of the models is able to describe charm fragmentation in the full phase space accessible in DIS at HERA (3-4 σ)
- HVQDIS does a bad job in describing the shape of the fragmentation observable at threshold (effect of HO's?)

Large effects from NLO also visible at threshold

Discussion - II

Conclusions

- From D* production different answers on the non-perturbative fragmentation parameter from the close-to and far-above threshold samples
- Fragmentation significantly harder at threshold than expected by all models investigated in the analysis. Over-estimation of gluon radiation at threshold?
- Especially HVQDIS does a bad job in describing the shape of the fragmentation observable at threshold
- The lack of understanding of fragmentation may introduce significant uncertainties when going to F₂^{cc} or comparing the visible cross section with calculations
- ⇒To better investigate the threshold region the D* phase space will be enlarged down to $p_{\perp}(D^*)=0.8-1$ GeV