From D* cross section to the F^c₂: extrapolation issues

Katerina Lipka

Experimental and theoretical issues of open charm production at HERA. Meeting 08 August 2008

$F_2^{c\overline{c}}$ extraction from D* cross sections

$$F_2^{c\bar{c}}(\exp) = \frac{\sigma_{vis}(\exp)}{\sigma_{vis}(theory)} F_2^{c\bar{c}}(theory)$$

Visible cross section: $pt(D^*)>1.5$ GeV, $|\eta(D^*)|<1.5$

Problem: detector sees only 30% of the phase space for $c \rightarrow D^*$

 \rightarrow strong model dependence due to large extrapolation factors

Extrapolation problems:

- 1) Different extrapolation models
- 2) Unknown parameters within a single model: extrapolation errors

Extrapolation problem 1: different models

Extrapolation Models:

- NLO: Riemersma et al: integrated form; HVQDIS: differential form, fixed order massive calculation, Nf=3, FFNS, evolution: DGLAP
- CASCADE: massive LO ME + Parton showers,

proton structure: gluons only, evolution: CCFM

Model parameters

HVQDIS:

PDFs: MRST04F3, m_c = 1.43 GeV , $\mu_r = \mu_f = \mu = \sqrt{Q^2 + 4m_c^2}$ Fragmentation:

shat-dependent fragmentation (talk by Karin Daum):

 \hat{s} <70 GeV²: α_{Kart} =6.0, otherwise α_{Kart} =3.3

CASCADE:

PDFs: A0, m_c = 1.43 GeV, $\mu_r = \mu_f = \mu = \sqrt{Q^2 + 4m_c^2}$

Fragmentation:

$$\hat{s}$$
<70 GeV²; α_{Kart} = 8.2, otherwise α_{Kart} = 4.3

Cross sections vs NLO and CASCADE

Lowest y (highest x) overestimated by NLO, underestimated by CASCADE Extrapolation of D* cross section to F2c

Extrapolation factors: NLO and CASCADE

Extrapolation factors ($\sigma_{tot}/\sigma_{vis}$) differ in NLO vs CASCADE: 30% (low x) -100% (high x)

H1 Preliminary: 2 results on F^c₂

Extrapolation Problem 2: unknown model parameters

charm cross section: varied scales

visible D* cross section at HERA

m_c, scales, pdf, fragmentation change both normalization and the shape of kinematics! Extrapolation of D* cross section to F2c 8

Extrapolation uncertainty: workaround

Idea:

estimate the extrapolation uncertainty via variation of model parameters

- charm mass: 1.3 < mc < 1.6 GeV
- renormalization/factorization scales:
 - simultaneously 0.5 $\mu < \mu_r = \mu_f < 2 \mu$
 - independent 0.5 μ < μ_r , μ_f < 2 μ , 0.5 < $\mu_r\!/$ μ_f < 2
- fragmentation model (s-dependent Kartwelishvili parameterization):
 - variation of \hat{s} cut off
 - variation of α_{Kart}
- Vary PDF

Variation of the charm mass in NLO

Most differences due to mass variation in σ_{vis} and F^{c}_{2} (NLO) cancel in the ratio

Variation of the scales in NLO, $\mu_r = \mu_f$

Extrapolation of D* cross section to F2c

Variation of mass and the scales in NLO

Warning 1:

- \bullet Varying $m_{\rm c}$ the gluon distribution should be also changed
- Workaround (plans):
 - Get (appropriate for the used model!) PDFs @ variable $\rm m_{c}$
 - Fit NLO @ variable m_c to the data

Warning 2:

Not yet proved that the scales indeed treated (technically) independent

• To be checked!

Variation of the PDF: mrst vs cteq

 F_{2}^{c} : sizable differences only at low Q² & low x – 2 bins, in average 2%

Uncertainties on the fragmentation in NLO

Extrapolation uncertainty due to fragmentation model

Significant uncertainty due to the fragmentation model

Extrapolation of D* cross section to F2c

Discussion

- Experimental measurements of D* cross section get very precise
- Extrapolation to the full phase space model dependent
- Model uncertainties larger than experimental errors
- Experimental needs: to come in the next 2-3 years
- Enlarge phase space: possible at H1
- Decrease experimental uncertainty (combination of different methods)

Theory needs:

- Proper theory (treatment):
 - Consistent parameters in the models
 - NLO + PS : MC@NLO to come in the next 1-2 years, GMVFNS?
 - NNLO?
 - NLO vs PS, Fragmentation : Workshop in November at DESY

Fragmentation uncertainties (CASCADE)

Fragmentation model: s<70 GeV²; α = 8.2, otherwise α = 4.3,

Uncertainties in the extrapolation: cross over varied by $\pm 20 \text{ GeV}^2$

Fragmentation uncertainties (CASCADE)

Fragmentation model: s<70 GeV²; α = 8.2, otherwise α = 4.3,

Uncertainties in the extrapolation: variation of α

Extrapolation factors in HVQDIS

Extrapolation factors in HVQDIS

Scale variations in Cascade

 $0.5 < \mu_r / \mu_0 < 2$ same PDF A0

$0.5 < \mu_r/\mu_0 < 2$, appropriate PDFs

Scale variations in Cascade

Using wrong PDF leads to wrong uncertainties:

Overestimated by a factor of 5!

Recall mass/scale variations in HVQDIS: don't have appropriate PDFs:

- expect large mass effects
- possible inconsistencies in μ_r

Mass variations in Cascade

Same mass variation: 1.3<m_c<1.6 GeV

Smaller uncertainty