PDF4MC - charm fits

H. Jung (DESY)

• PDF4MC

why special PDFs for MCs are needed, necessary and important

- Strategy:
 - HOWTO obtain PDF4MC
- which data to use for fits final states from HERA
- Resume on charm fits

Motivation: example from HERA

- Collinear approach: incoming/outgoing partons are on mass shell (y+q)² = q'², -Q² + x y s = 0 → x= Q²/(ys)
- BUT final state radiation:

 $(\gamma + q)^2 = q'^2$, $-Q^2 + x \gamma s = m^2 \rightarrow x = (Q^2 + m^2)/(\gamma s)$

• **AND** initial state radiation:

 $(\gamma + q)^2 = q'^2$, $-Q^2 + x \gamma s + q^2 = 0 \Rightarrow x = (Q^2 - q^2)/(\gamma s)$

- Collinear approach: $q'^2 = q^2 = 0$, order by order
- Well known.... since years....

NLO corrections... better treatment of kinematics... but still not all....
 H. Jung, Experiment-Theory meeting on charm physics, 8. Aug 2008

gluon from F_2

- F_2 described by PYTHIA with reasonable χ^2
- significant difference from including initial state parton showers
- gluon much less steep
- change of kinematics
- better treat kinematics from beginning
- special machinery in DIS needed....

H. Jung, Experiment-Theory meeting on charm physics, o. Aug 2000

PDF4MC - why ?

- MC generators include not only LO ME calculations, but include resummation to all orders via parton showers
- as resummations are now included in PDF determiantions, parton showers should also
- "factorization scheme" in MC event generators is not DIS, nor MSbar, but a MC specific factorization scheme
- in a global analysis, PDF and also parton shower parameters can be simultaneously determined ...
- kinematic effects of including transverse momenta can be important for PDFs

Strategy

- fully consistent approach would require doubly uPDFs and appropriate factorization theorem, which will include collinear factorization and kt-factorization as asymptotic limits...
- branch 1: use uPDFs and k_{t} -factorization as done with CCFM and CASCADE (see talks at HERA-LHC WS 2008 by F. Hautmann, A. Knutsson and CASCADE)
- branch 2: use standard MCEG like PYTHIA/HERWIG/RAPGAP but also ALPGEN/SHERPA etc and obtain PDFs from fits to F₂ and

TeVatron data, as done in global analyses

- neither LO or NLO is appropriate
- define MC-PDFs, depend on generator, parton showers etc
 - MC-factorization scheme.... instead of MS bar
- include proper treatment of parton showers in initial and final state
- include all kinematics from full simulation, no approximations

Strategy (cont'd)

- use LHAPDF library for parton evolution and alphas
 - use any distribution and evolution code
 - evolve for every call (fast enough, can be improved if necessary...)
 - massive/massless treatment
- use HZTool/RIVET for comparison of MC prediction with measurements
 - HERA H1/ZEUS: F_2 , F_2^c , D*, jets etc....
 - and at a later stage
 - TeVatron CDF/DO: jets, W/Z x section as fct of pt
- use general fit program (PROFFIT A. Bacchetta, A. Knutsson, K. Kutak)
 - easy to extend for other MC generators and also NLO programs
 - Improvements for fits (in progress: A. Knutsson, K.Kutak, H. Hoeth)
 - → calculation in grid points
 - → parametrization
 - fit to data (including uncertainties)

H. Jung, Experiment-Theory meeting on charm physics, 8. Aug 2008

Where to start ... ?

- determination of gluon distribution
- use CTEQ 6L as starting distribution (evolution code is fast)
 - with NLO $\, lpha_{
 m s} \,$
 - with heavy quark PDF
- evolve starting distribution for every event

Which data to use for PDF4MC fit ?

- inclusive structure function measurements:
 - F₂ from HERA (not used here)
- heavy quark measurements at HERA:
 - F_2^{c} , D* in DIS, D* + dijets in DIS

The problem with charm

- F₂^c depends on assumption for extraction
- large extrapolation factors
- more results at ICHEP 08

H. Jung, Experiment-Theory meeting on charm physics, 8. Aug 2008

The gluon from F_2^{c} ...

- Fit DGLAP F2c
 to obtain gluon
- use RAPGAP with massive MEs in LO + PS
- steep gluon
 obtained ...
- is this a problem of the way F₂^c is "measured" ?

H. Jung, Experiment-Theory meeting on cnarm physics, o. Aug 2000

Fits to D* cross section

- use measured
 xsection of D*
- fit Q^2, x, p_t, η
- improve χ^2 by 6 units compared to starting values
- much improved χ^2 compared to F2c fit

10 D∗fit f2cfitz01100 10³ 10 10² 10 10 10² dsigma/02 06-240 data 10 dsigma/dx 08-240 data 10 -1.5 1.5 10 dsigma/dpt 06-240 data dsigma/deta 06-240 data

Production of D*+- Mesons with Dijets in Deep-Inelastic Scattering at HERA. H1 Collaboration (A. Aktas et al) Eur.Phys.J.C51:271-287,2007.hep-ex/0701023

Gluon from D* with jets

Production of D*+- Mesons with Dijets in Deep-Inelastic Scattering at HERA.

H1 Collaboration (A. Aktas et al) Eur.Phys.J.C51:271-287,2007.hep-ex/0701023 only slightly 40 40 changed $Q^2 = 1.69 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ 35 35 parameters 30 30 ctea6l ctea6I Dstar-dijets Dstar06240 Dstar-dijets Dstar06240 25 25 **BUT** further 20 20 15 15 constraints due 10 10 5 5 to different 0 n -2 kinematic х X regions 40 O 40 Gluon can be well × 35 $Q^2 = 100 \text{ GeV}^2$ $Q^2 = 1000 \text{ GeV}^2$ 35 30 30 cteq6l cteq6I determined from Dstar-dijets Dstar06240 Dstar-dijets Dstar06240 25 25 20 20 visible charm x-15 15 section 10 10 5 5 С 3 3 Х

H. Jung, Experiment-Theory meeting

Resume from heavy quarks

- use only visible cross sections,
 - at least for MC fits.... extrapolations to total x-section highly model dependent
 - D* and D*+jet measurements give consistent results for gluon
 - result is nearly identical to CTEQ61
 - BUT pdf in massless scheme, and ME massive ...
 - NLO alphas in pdf, BUT LO alphas in ME
 - need to check consistency on mass parameters etc