Run 2 data taking: Challenges for tau triggers

<u>Michał Bluj</u> National Centre for Nuclear Studies, Poland

14th workshop of the ττ analysis WG 17 November 2015

R

Preface: trigger of CMS

- Why trigger?
 - Reduce collision rate to manageable level keeping interesting events

The CMS way

Preface: trigger of CMS

Level-1 trigger (L1)

Fast readout of detector with reduced granularity

- Muon system:
 - Standalone muons
- Calorimetry (HCal & Ecal):
 - Electron/gammas (EG's), jets, taus, MET, HT
- + combinations of above Based on hardware (FPGA's, ASIC's) Constraints (detector readout)
- Max. latency ~4 µs

• Max. output rate 100 kHz (~3 kHz for tau triggers)

High level trigger (HLT)

Full detector readout

- Muon system, calorimetry and tracker
 Based on software at commercial CPU's (PC's)
- Same framework as for offline reconstruction => sharing of algorithms (Particle-flow) Constraints
- Max. avg. time to take decision (timing) ~150 ms
- Max. output rate O(1) kHz

The challenges of LHC Run 2

Compared to LHC Run 1

8 → 13 TeV Factor of ~2 in crosssection from the increase of energy; Can be >2 for multiobjects triggers because of combinatorial

Luminosity

Peak luminosity 7e33 \rightarrow 1.4e34 cm⁻²s⁻¹ => Factor of 2 in rate

Bunch spacing

 $50 \rightarrow 25 \text{ ns}$ Increase of out-of-time pileup (PU)

Rate at least x4

In-time $\langle PU \rangle \sim 25 \rightarrow \langle PU \rangle \sim 40$ Impact of out-of-time pileup larger than during Run-1

- The challenge:
 - Keep rate under control
 - Keep timing (execution time of trigger system) under control
 - Keep good physics acceptance

14th the tau, tau WG workshop, 17 Nov. 2015

Ways to react

Use combination of all above strategies

- Try to keep thresholds as low as possible
- Upgrade L1 hardware (stage-1 in 2015 and stage-2 in 2016) keeping 100 kHz of output rate (limited by detector readout)
- Increase of size of HLT and T0 (prompt reco) computer farms
 - Prompt reco rate avg. ~1 kHz (400 Hz in 2012)

14th the tau,tau WG workshop, 17 Nov. 2015

Tau triggers

- $_{\odot}$ Four different final states covered by triggers with taus (tau= τ_{h})
 - double-tau
 - e+tau, mu+tau
 - tau+MEt

with different purities and handles to control background (rate)

- Strategy: Use triggers as inclusive as possible => small number of (different) objects defining a trigger
 - Can be used by wide spectrum of analyzes => more bandwidth allocated per trigger
 - Easier to control => smaller systematics, smaller number of control triggers
- Disclaimer: Double-(light)lepton final states, e+mu, 2mu, 2e, are not covered in this talk. They are however less difficult for triggering thanks to good purity.

Reference: tau triggers at Run 1

Muon+Tau:

Isolated muon p_{γ} > 17 GeV + Loosely isolate Tau p_> 20 GeV

Single muon at Level-1 => sharp turn-on of Tau 0

Image: Electron+Tau

Isolated electron $p_{-}> 22 \text{ GeV} + \text{Loosely isolate Tau}$ p_> 20 GeV

- Single IsoEG at Level-1 => sharp turn-on of Tau
- Double-Tau

Double-Tau **p_> 35 GeV** + jet p_> 30 GeV

Double-Tau p_> 40 GeV (parking)

o Level-1: Double-Tau p₁> **30 GeV** (parking) ○ Level-1: Double-Tau p₁> **30 GeV*** => HLT/offline tau at L1 turn-on

Tau+MET: \bigcirc

Tau p₋> 35 GeV + MET > 70 GeV

=> Goal for Run 2: keep Run 1 acceptance (or even improve it)

* Rescaled to offline scale, nominal value is 44 14th the tau, tau WG workshop, 17 Nov. 2015

20

τp_[GeV/c]

Level-1 taus

- Calorimetry only based
- Improvements: explore granularity of detector
- Run 1 algorithm
 - Built with 4x4 TT region (0.35x0.35 in η - ϕ)
 - E_T computed from 12x12 TT region with ES shared with jets (~30% too high),
 - Isolation: 7 from 8 non-central 4x4 TT regions with E₁< 2 GeV (w/o PU subtraction)
 => inefficiency at high E₁ compensated by adding jet (high rate) and PU dependence,
 - Tau veto: energy contained with 2x2 region $_{Pb'}$ with $E_{T}(TT) > 4 \text{ GeV}$
 - Unique tau collection (with up to 4 tau)

Level-1 taus

- Calorimetry only based
- Improvements: explore granularity of detector
- Run 2, stage-1 upgrade algorithm (2015)
 - Built with 4x4 TT region (0.35x0.35 in η - ϕ)
 - \mathbf{E}_{T} computed from two neighbor 4x4 TT region with specific tau ES corrections,
 - Isolation: $E_{T}(12x12)/E_{T}(tau)-1<0.1$, where $E_{T}(12x12)$ (jet) with PU subtraction
 - Tau veto: in each 4x4 TT regions
 - **Two collections** (with up to 4 taus each):
 - Relaxed taus w/o isolation and tau veto
 - Tight w/ isolation and tau veto => Double-Tau L1T with E_{T} > 40 GeV (at 1.4e34) with tight WP => IsoEG/Mu+Tau with E_{T} (Mu/IsoEG) > 16/22 GeV and E_{T} (tau)>20 GeV

Level-1 taus

- Calorimetry only based
- Improvements: explore granularity of detector
- Run 2, stage-2 upgrade algorithm (2016+)
 - Built with TT (0.09x0.09 in η-φ)
 - E_T from dynamic clusters build around seeding TT, neighbor clusters can be merged => smaller rate thanks to reduced active area with preserved resolution
 - Isolation: $E_{T}(5x9)-E_{T}(tau) < X(E_{T}, η, PU)$
 - Tau veto: more shapes defined
 - Many WP allowed (up to ~6)
 - Single-tau trigger with sensible threshold (~100 GeV) should be affordable
 - Still requires final definition and tuning => work ongoing

HLT Taus

- Simplified offline Tau-Id
 - Particle Flow based (online version)
- Reconstruction in steps
 - Leading track finding (close to jet axis)
 - 3 highest Pt tracks and EM strips in signal cone around leading track (0.08 < R=3.6/Pt < 0.12) define tau momentum
 - Track isolation in a cone around leading track (R=0.4)
 - Sum(Pt) < 3(2) GeV for Loose (Medium) WP
 - => Simple, fast and robust algorithm
 - Resolution similar to offline one
 - Efficiency >90% (~100% at plateau)
 - $\circ~$ Jet \rightarrow tau fake rate 5-10%

Strategy for Lepton+Tau

- High lepton Pt>30-35GeV will result sensitivity loss and different background composition
 - Threshold guided by Level-1 lepton rate
 - $\circ \quad Z \rightarrow \tau\tau \ standard \ candle \ suppressed$
- Cross-trigger (at Level-1) allows to save events with lepton Pt~20GeV with the cost of additional turn-on of L1 Tau
 - => Combination of the two preserves Run 1 sensitivity
 - Affected region with smallest S/B ratio

- Covered by double-tau trigger similar to Run 1, but with tighter isolation and higher threshold at Level-1
 - Overall efficiency for SM H125 will be 20-30% lower than during Run 1
 - Most of signal within turn-on region => need control turn-n very well!
- Efficiency at high-Pt (for high-mass H) can be improved with single-tau trigger – should be affordable with stage-2 upgrade algorithm

Strategy for Tau+MET

- Thresholds increase significantly in order to maintain rate
 - Level-1
 MET > 36 → 70 GeV
 - HLT

Tau Pt > 35 \rightarrow 50 GeV MET > 70 \rightarrow 120 GeV

- Our Section Section 5.5 However, increase of thresholds does not affect physics as focus for Run 2 are high mass H[±] / W' → τυ
 Our Section 5.5 How Section 5.5
 - low mass already excluded thanks to Run 1 data

Summary

- Challenges of tau triggering with LHC Run 2 conditions was discussed
- Ways to preserve signal acceptance was discussed
 - Upgrade of Level-1 trigger hardware to better explore detector resolution
 - Increase of HLT performance thanks to both better algorithm and more powerful resources
- Acceptance in lepton+tau channels preserved thanks to combination of lepton+tau and single lepton triggers
- Double-tau efficiency will be reduced by 20-30%
- ◎ Waiting for data taking with inst. luminosity of 1.4e34 cm⁻²s⁻¹:)

Additional material

14th the tau, tau WG workshop, 17 Nov. 2015

HLT tracking

Iterative Tracking at HLT:

iter0: prompt tracks high pT w/ pixel tracks iter1: prompt tracks low pT w/ pixel triplets iter2: recover prompt tracks high pT w/ pixel pairs iter4: displaced tracks w/ strip triplets (in 2015 it will be run only in a sub set of trigger paths where displaced tracks are needed)

14th the tau, tau WG workshop, 17 Nov. 2015