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Introduction

The Task

signal: jets from hadronic tau decays

@ more collimated than background

background: jets from pure QCD processes
@ higher particle multiplicity than signal

v

Classification

@ give each tau candidate a tau score € [0; 1]

o 0 ~ background-like, 1 ~ signal-like
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ANNs/Artificial Neurons
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ANNs/Artificial Neurons
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Figure: Artificial neurons solve linearly separable problems.
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ANNs/Multi-Layer Networks
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Figure: Each layer performs a linear transformation and then applies the
activation function element-wise.
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Training/Error Function

@ measures distance between desired and actual input

e e.g. mean-squared error: E(w) = 1 3 (y(x;, w) — t;)?
i

@ training = minimization of E(w)

Challenges

@ many dimensions: Nyeights € 0(10%)

@ many local minima
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Training/Procedure

Procedure

© start with random initial synapse weights wg
= breaks up symmetries of E(w)

@ minimize E(w) iteratively in epochs 7:
o calculate gradient VE(w)
o use it to modify weights: w(7 + 1) = w(7) + Aw

@ stop training if E(w) stops decreasing
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Training/Training Algorithms

Training Algorithms

Gradient Descent: straightforward approach, Aw ~ —VE(w)

@ vulnerable to local minima
@ many parameters to be tuned correctly
SARPROP: modified gradient descent with additional statistical noise
@ better results
@ only one tunable parameter
BFGS: approximates Hessian of E(w) using VE(w)

@ same performance as SARPROP
@ no fine-tuning
@ computationally more expensive
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Training/Score Histogram
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Figure: Score histogram of an ANN for multi-prong tau candidates. The peaks
are very narrow and give numerical difficulties.
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Instability of ANN Training

Inverse Background Efficiency
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Figure: Best and worst ANN out of 50. The erratic behavior for £¢, < 0.3 and
multi-prong tau candidates is due to low statistics. (cf. previous slide)
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Instability of ANN Training

Problem

@ initial weights are chosen randomly
= training ends in random local minimum

= performance of the final classifier is random, too

Solution: Ensembles

o train N ANNs with different initial weights

N
@ average their scores for each tau candidate: ygpns = % > YANN,i
i=1

reduces variance due to initial weights

also reduces variance due to overfitting(!)

N =5 gives good results, N = 10 is only marginally better
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Instability of ANN Training
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Figure: Best and worst five-member ANN ensemble. Standard deviation due to
random initial weights is reduced by 71 % for 1-prong and by 47 % for multi-prong
tau candidates.
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Results/Optimization

What affects the classifier performance?

@ training algorithm

e error function E(w)
@ network topology (number of hidden layers, neurons per hidden layer)
@ activation function of the hidden layers

v

Procedure

@ train and evaluate ANN ensembles for each configuration

@ compare to theoretical predictions
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Results/Final Classifier
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Figure: The relative difference between MLP and BDT is +6.1%

—0.4% (multi-prong).
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Summary & Outlook

o first implementation and study of ANN-based tau identification

@ comparison with BDT-based approach
1-prong: improved by ~ 6 %
multi-prong: no significant difference
@ ensemble formation increased stability and performance
@ optimization w.r.t.

e training method

e error function

o hidden layer activation function
e network topology
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Summary & Outlook

@ larger training samples (especially for multi-prong)
@ substructure variables

@ look into more modern training algorithms

°

more sophisticated ensembles (bagging, boosting)
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Backup/Implementation

e ROOT 5.34

e TMVA's MLP method
e supported training methods: gradient descent, BFGS
e implemented ourselves: SARPROP

@ wrapped in a Python package for parallel training of ANNs

Benchmark BDT
@ new BDT trained on the same samples as the ANN for better
comparison

@ pr- and nyc-reweighting, no cross-section weights

@ pr-dependent cut-off score
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Backup/Implementation
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Figure: Comparison of the default and the benchmark BDT. The benchmark BDT
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is worse than the default, but allows more realistic comparison of ANNs.
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Backup/Implementation /ID Variables

Variables for 1-prong Variables for 3-prong

@ tau_calcVars_corrCentFrac @ tau_calcVars_corrCentFrac
@ tau_calcVars_corrFTrk @ tau_calcVars_corrFTrk
@ tau_piO_vistaum @ tau piO_vistaum
@ tau_ptRatio @ tau_ptRatio
@ tau_seedCalo_trkAvgDist @ tau_seedCalo_trkAvgDist
@ taupiOn @ taupilOn
@ tau_ipSigLleadTrk @ tau massTrkSys
@ tau_seedCalo_wideTrk.n @ tau_seedCalo_dRmax

~ @ tau_trFlightPathSig

y
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Backup/Implementation /Training Samples

Table: Sample sizes and processes. (ATLAS work in progress)

Training/Validation set Test set

Process 1-prong 3-prong 1-prong  multi-prong
Signal samples

W —rtv, 24065 7959 32116 14382
Z— 77" 26 634 7714 35598 13878
Zyeog — 7T 24137 6718 32237 11069
Zlgog — 7T 24713 6398 32605 10725
Zioogo = TTTT 25239 5324 33484 10588
Total 124838 34113 166 040 60 642

Background sample
PeriodD 66 837 86 165 89913 259552
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Backup/Optimization/Training Algorithm
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Figure: SARPROP and BFGS give about equal results. (But BFGS is very slow.)
Stochastic gradient descent (BP) is much worse.

Nico Madysa

ANN-based Id

ic Tau Decays



Backup/Optimization/Error Function
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Figure: Comparison of mean-squared-error (MSE) with cross-entropy (CE) error
function. CE is better because it's specialized for binary classification tasks.

Nico Madysa

ANN-based Id

ic Tau Decays



Backup/Optimization /Activation Function
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Figure: Comparison of tanh and logistic function (sigmoid) as hidden layer
activation function. Tanh results in quicker training due to numerical reasons and
thus gives better results than sigmoid when trained for the same amount of
epochs.
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Backup/Optimization /Network Topology

10t e e e

—MLP

LLiiig

—_
o
w
T \HHH‘
1 \HHH‘

102

Inverse Background Efficiency

-
o

FIRERERTN BRI SRR L L

01 02 03 04 05 06 07 08
Signal Efficiency

Figure: AUC = f03750 (ebkg) “1desig is a good figure of merit.
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Backup/Optimization /Network Topology

& 10 [T Ezsi‘uwuu_uwuH‘HH‘HH‘HH’
s [ £ 1S 1
o wooL 1
I 1 224 N
Sost 4G r 4
> [ 12 [ ]
T 1<t ]
L ] 20 ,

9l i L ]

F 1 20 1

[ Vs=8TeV ] r Vs=8TeV 1
8,5 1-prong — L multi-prong 4

[ ATLAS work in progress ] 18 ATLAS work in progress  _|

[ —e— 2 hidden layers 1 [ —e— 2 hidden layers ]

8 —=— 3 hidden layers | 161 —=— 3 hidden layers | |

[ —+— 4 hidden layers ] L —+— 4 hidden layers 4

F —— 5 hidden layers 4 r —— 5 hidden layers 1

P S N B B S R P7Y N A AV ETIN A I AT AN AR R B
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Neurons per Hidden Layer Neurons per Hidden Layer

Figure: Comparison of different network topologies. The error bars give the

empirical standard deviation of ANN ensembles. The optimal topology is 4 layers

with 20 hidden neurons each.
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Backup/Optimization /Overfitting
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Figure: Slight overfitting is acceptable since the ensemble averages it out.
(Shown: Error function during training on 1-prong sample)
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