

PHYSICS NEWS WITH TAUS FROM ATLAS

MICHEL JANUS ON BEHALF OF MANY VALIANT PEOPLE 16TH OF NOVEMBER 2015

2015 ATLAS Results

- Evidence of Yukawa couplings to τ
 - JHEP04(2015)117
- Lepton Flavour Violating (LFV) $H \rightarrow \tau \mu$
 - <u>submitted to JHEP</u>
- ttbar-associated production
 - <u>PLB 749</u>
- hh→bbττ
 - <u>PRD 92</u>

- Embedding method
 - <u>JINST 10</u>
- Н→аа→µµтт
 - <u>PRD92</u>
- charged H→τυ
 - <u>JHEP03</u>
- T-reco commissioning for Run2
 - <u>ATL-PHYS-PUB-2015-25</u>

Evidence for SM $H \rightarrow \tau\tau$

- ATLAS sees evidence for Higgs boson yukawa couplings to τ leptons
- Consistent with SM couplings and mass of I25GeV
 - <u>JHEP04(2015)117</u>

Channel and Category	Expected Significance (σ)	Observed Significance (σ)
$\tau_{lep}\tau_{lep}$ VBF	1.15	1.88
$\tau_{lep}\tau_{lep}$ Boosted	0.57	1.72
$\tau_{lep}\tau_{lep}$ Total	1.25	2.40
$\tau_{lep}\tau_{had}$ VBF	2.11	2.23
$\tau_{lep}\tau_{had}$ Boosted	1.11	1.01
$\tau_{lep}\tau_{had}$ Total	2.33	2.33
$\tau_{had}\tau_{had}$ VBF	1.70	2.23
$\tau_{had} \tau_{had}$ Boosted	0.82	2.56
$\tau_{had}\tau_{had}$ Total	1.99	3.25
Combined	3.43	4.54

3

Discovery for SM $H \rightarrow TT$

- CMS+ATLAS combination establishes discovery at 5.5σ significance
- Still consistent with SM Higgs rate
- Some call it <u>CMS-PAS-HIG-15-002</u>, others <u>ATLAS-CONF-2015-044</u>
- Let's agree to call it a fine example of cross-experiment collaboration

Discovery for SM $H \rightarrow TT$

- Higgs $\rightarrow \tau \tau$ will continue to be an interesting channel also post-discovery
- Best constraint on Higgs coupling to fermions
- Also contributed strongly to measuring VBF production rate at 5.4σ significance
- Access to direct Higgs-fermion vertex allows CP measurement in τ decays

top associated $H \rightarrow TT$

- Disambiguation of leptons and hadronic T decays from H and t decays difficult
- Analysis also includes WW, ZZ and other Higgs decays
- Therefore categorise by number of leptons and taus
 - channels including hadronic T decays are: 2leptons
 +IT and Ilepton+2T's

	Higgs boson decay mode				
Category	WW^*	au au	ZZ^*	Other	
$2\ell 0 au_{ m had}$	80%	15%	3%	2%	
3ℓ	74%	15%	7%	4%	
$2\ell 1 au_{ m had}$	35%	62%	2%	1%	
4ℓ	69%	14%	14%	4%	
$1\ell 2 au_{had}$	4%	93%	0%	3%	

Category	q mis-id	Non-prompt	$t\bar{t}W$	$t\bar{t}Z$	Diboson	Expected bkg.	$t\bar{t}H\ (\mu=1)$	Observed
$ee + \ge 5j$	1.1 ± 0.5	2.3 ± 1.2	1.4 ± 0.4	0.98 ± 0.26	0.47 ± 0.29	6.5 ± 1.8	0.73 ± 0.14	10
$e\mu$ + $\geq 5j$	0.85 ± 0.35	6.7 ± 2.4	4.8 ± 1.2	2.1 ± 0.5	0.38 ± 0.30	15 ± 3	2.13 ± 0.41	22
$\mu\mu$ + $\geq 5j$	_	2.9 ± 1.4	3.8 ± 0.9	0.95 ± 0.25	0.69 ± 0.39	8.6 ± 2.2	1.41 ± 0.28	11
ee + 4j	1.8 ± 0.7	3.4 ± 1.7	2.0 ± 0.4	0.75 ± 0.20	0.74 ± 0.42	9.1 ± 2.1	0.44 ± 0.06	9
$e\mu$ + $4j$	1.4 ± 0.6	12 ± 4	6.2 ± 1.0	1.5 ± 0.3	1.9 ± 1.0	24 ± 5	1.16 ± 0.14	26
$\mu\mu$ + $4j$	_	6.3 ± 2.6	4.7 ± 0.9	0.80 ± 0.22	0.53 ± 0.30	12.7 ± 2.9	0.74 ± 0.10	20
3ℓ	-	3.2 ± 0.7	2.3 ± 0.7	3.9 ± 0.8	0.86 ± 0.55	11.4 ± 2.3	2.34 ± 0.35	18
$2\ell 1\tau_{\rm had}$	-	$0.4 {}^{+0.6}_{-0.4}$	0.38 ± 0.12	0.37 ± 0.08	0.12 ± 0.11	1.4 ± 0.6	0.47 ± 0.08	1
$1\ell 2 au_{\rm had}$	-	15 ± 5	0.17 ± 0.06	0.37 ± 0.09	0.41 ± 0.42	16 ± 5	0.68 ± 0.13	10
$4\ell Z$ -enr.	-	$\lesssim 10^{-3}$	$\lesssim 3 imes 10^{-3}$	0.43 ± 0.12	0.05 ± 0.02	0.55 ± 0.15	0.17 ± 0.02	1
$4\ell Z$ -dep.	-	$\lesssim 10^{-4}$	$\lesssim 10^{-3}$	0.002 ± 0.002	$\lesssim 2 imes 10^{-5}$	0.007 ± 0.005	0.025 ± 0.003	0

top associated $H \rightarrow TT$

- Given the available luminosity, not sensitive to SM signal
- 95% CL at 4.7 (2.4) x SM observed (expected)
- Due to combinatorics of top pair+H decay products, currently use ditau visible mass
- Looking into disambiguation via kinematic fit

m_{vis}^{τ τ} [GeV]

hh→bbTT

- Many different h decay mode combinations considered
- Both resonant and non-resonant hh production
 - non-resonant production: use MMC for ditau mass
 - for resonant combine MMC with bb invariant mass

GÖTTINGEN

GEORG-AUGUST-UNIVERSITÄT

g QQQQQQQ

hh→bbTT

- No significant excess, so set 95% CL limits
- For non-resonant set combined limit on hh production cross section
 - observed (expected) at 0.69 (0.47) pb corresponds to 70 (48) x SM strength
- For resonant production 95% CL depends on mass of mother particle
 - ranges from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV

LFV $H \rightarrow \mu \tau$

- Recently seen $\sim 2\sigma$ excess in CMS results
- OS muon and hadronic τ decay
- two signal regions in $mT(\mu)$ -m $T(\tau)$ plane
 - SRI: dominant BG W+jets
 - SR2: dominant BG $Z \rightarrow \tau \tau$ + jets
- <u>submitted to JHEP</u>

Cut	SR1	SR2	WCR	TCR
$p_{\mathrm{T}}(\mu)$	$>26~{\rm GeV}$	$>26~{\rm GeV}$	>26 GeV	$>26 { m GeV}$
$p_{\mathrm{T}}(au_{\mathrm{had}})$	$>45~{\rm GeV}$	$>45~{\rm GeV}$	$>45~{\rm GeV}$	$>45~{\rm GeV}$
$m_{\rm T}(\mu, E_{\rm T}^{\rm miss})$	$>40~{\rm GeV}$	$<\!40~{ m GeV}$	$>60~{\rm GeV}$	-
$m_{\rm T}(\tau_{\rm had}, E_{\rm T}^{\rm miss})$	$<\!30~{\rm GeV}$	$<\!60~{ m GeV}$	$>40~{\rm GeV}$	_
$ \eta(\mu) - \eta(\tau_{\rm had}) $	$<\!\!2$	$<\!\!2$	$<\!\!2$	<2
$N_{ m jet}$	—	—	—	>1
$N_{b-\mathrm{jet}}$	0	0	0	>0

LFV $H \rightarrow \mu \tau$: BG Model

- Separate BG control regions for top, W+jets and Z+jets (SR2 started life as ZCR)
- QCD Multijet (plus some W+jets) modelled with SS data, other BG with MC OS-SS
- $Z \rightarrow \tau \tau$ modelled with embedding
- Mass reconstructed with special MMC tune for prompt muon+hadronic τ decay

$$N_{\rm OS}^{\rm bkg} = r_{\rm QCD} \cdot N_{\rm SS}^{\rm data} + N_{\rm OS-SS}^{Z \to \tau\tau} + N_{\rm OS-SS}^{Z \to \mu\mu} + N_{\rm OS-SS}^{W+jets} + N_{\rm OS-SS}^{\rm top} + N_{\rm OS-SS}^{VV} + N_{\rm OS-SS}^{H \to \tau\tau},$$

LFV $H \rightarrow \mu T$: Results

• 2.2 (1.3) σ local (global) excess in SR2

Outlook for Run2

- pp data-taking in 2015 done
- Lumi not sufficient for rediscovery of Higgs $\rightarrow \tau \tau$
- But still lots we can do with this data
- validate tau reconstruction \rightarrow Peter's talk
 - especially want to utilize T substructure
- understand backgrounds
 - re-establish embedding method \rightarrow Juergen's talk
 - MC modelling at I3TeV
- re-tune mass reconstruction
 - MMC being tuned to 13TeV and 2015 pileup
 - other algorithms being tested

GEORG-AUGUST-UNIVERSITÄT

Summary

- SM H decay to T-leptons discovered in CMS+ATLAS combination
- Hints in Run I data that we should look closely at LFV $H \rightarrow \tau \mu$ decay
- ~4fb-1 of 2015 data, not enough by itself to rediscover $H \rightarrow \tau \tau$ at 13TeV
- But working on understanding our backgrounds
- Some development in ditau mass reconstruction
 - retuning old methods to Run2 conditions and
 - also new tune for existing mass reco for LFV $H \rightarrow \tau \mu$
- Eager to test drive new substructure reconstruction
 - allow access to CP properties of the Higgs boson in fermion decays
 - also improve analysis sensitivity by decay-mode categorization

Backup

Basic T Properties

 τ^- Branching ratios (m_r=1.78 GeV):

- properties of hadronically decaying T's:
- very well collimated object of charged and neutral pions
- charged component of T reproduces the direction of visible T well (particularly leading pion)
- most T's have one or three charged decay products (pions)
- modest but significant proper lifetime (87 microns)