

CMS Physics News : Run1 Searches for BSM $\Phi \rightarrow \tau \tau$

Alexei Raspereza

HTauTau Workshop, November 16th 2015

Recent public results

- Wrapping up analyses of Run 1 data : searches for BSM Higgs bosons decaying to tau leptons
- MSSM $\Phi \rightarrow \tau \tau$ search using new tau identification algorithm and event categorization based on hadronic tau p_T CMS PAS HIG-14-029
- search for heavy Higgs bosons in channels $H \rightarrow hh \rightarrow (bb)(\tau\tau)$ and $A \rightarrow hZ \rightarrow (\tau\tau)(\ell \ell)$: HIG-14-034, arXiv:1510.01181, submitted to PLB
- search for low mass pseudoscalar produced in association with b quarks and decaying into tau pairs HIG-14-033, arXiv:1511.03610, submitted to PLB
- search for very light NMSSM Higgs bosons in H(125) $\rightarrow 2\phi_1 \rightarrow 4\tau$: HIG-14-019, arXiv:1510.06534, submitted to JHEP

Updated MSSM $\Phi \rightarrow \tau\tau$ search

 Exploited production mechanisms

- Exploited di-tau decay modes $\mu au_{
 m h}, e au_{
 m h}, au_{
 m h} au_{
 m h}, e \mu, \mu \mu$
- new MVA based $\tau_{\rm h}$ identification using lifetime information (track impact parameters, secondary vertex information) (see talk by C. Veelken) $\gamma\beta c\tau \approx 1-10\,{\rm mm}$
- Event categorization
 - no b-jets (p_ $_{_{T}}>20$ GeV, $|\eta|<2.4)$
 - + \geq 1 b-jet (p_{_T} > 20 GeV, $|\eta| < 2.4)$
 - < 2 jets ($p_{_T}$ > 30 GeV, $|\eta|$ < 4.5)
- Further event categorization in the $\mu \tau_{\rm h}, e \tau_{\rm h}$ channels based on tau p_T (trailing tau p_T in $\tau_{\rm h} \tau_{\rm h}$ channel)

Updated MSSM $\Phi \rightarrow \tau \tau$ search

- Major backgrounds : $Z \rightarrow \tau\tau$, TTBar, W+Jets, QCD...
- Signal extracted using fully reconstructed di-tau mass distributions (dedicated talk by C. Veelken)
 - in the $\mu\mu$ channel signal is extracted from the 2D distributions $[m_{_{\tau\tau}},m_{_{\mu\mu}}]$

Updated MSSM $\Phi \rightarrow \tau\tau$ search

- No evidence of signal found
- Model independent result : constraints on signal production cross section times BR (search for narrow $\Phi \rightarrow \tau \tau$ resonance) set limits on each process (other process is profiled)

Updated MSSM $\Phi \rightarrow \tau\tau$ search

Improvement with respect to previous results

Updated MSSM $\Phi \rightarrow \tau \tau$ search

• limits in $(m_{a}, \tan\beta)$ plane (benchmark scenarios)

Search for $H \rightarrow h(125)h(125) \rightarrow (bb)(\tau\tau)$

- 260 < $m_{_{
 m H}}$ < 350 GeV , $m_{_{
 m h}}$ = 125 GeV $_{_{
 m 1}}$
 - $(m_{_H} > 350 \text{ GeV} \Rightarrow H \rightarrow \text{tt dominates})$
- \bullet probes low tanß domain of MSSM
- uses inclusive selection devised for the MSSM $\Phi \rightarrow \tau \tau$ analysis
 - $\mu \tau_{\rm h}, e \tau_{\rm h}, \tau_{\rm h} \tau_{\rm h}$

- Require 2 jets in the event
- Event categorization based on number of b-tagged jets
 - **0-tag :** background dominated
 - 1&2-tag : share signal with 2-tag most sensitive

Search for $H \rightarrow h(125)h(125) \rightarrow (bb)(\tau\tau)$

- Apply mass cut in a window around 125 GeV in m_{bb} and m_{π}
- Extract signal from the fit to the 4-body mass
 - reconstructed using kinematic fit (dedicated talk by Benedikt)

Search for $H \rightarrow h(125)h(125) \rightarrow (bb)(\tau\tau)$

- No signal is observed
- Interpretation with focus on MSSM/2HDM
- Both model independent and model dependent results provided
 - Constraints on $\,\sigma imes \mathcal{B}\,$

• Model dependent results in combination with $A \rightarrow Zh(125) \rightarrow (\ell \ell)(\tau \tau)$ search (see next slides)

Search for A \rightarrow Zh(125) $\rightarrow (\ell \ell)(\tau \tau)$

- select Z → ee/µµ events
- select tau-pair : $e\mu, \mu au_{
 m h}, e au_{
 m h}, au_{
 m h} au_{
 m h}$
- apply cut

 $L_{\rm T}^{\rm h} = p_{\rm T}^{\tau_1, \rm vis} + p_{\rm T}^{\tau_2, \rm vis} > 70 \,{\rm GeV}$

reconstruct 4-body mass (m_A)

tau momenta from CA

→ Combine 8 different channels and fit m_A for signal extraction

Search for A \rightarrow Zh(125) \rightarrow ($\ell\ell$)($\tau\tau$)

- No significant excess in data
- both model independent and model dependent results provided
- Constraints on $\sigma \times \mathcal{B}$ for the process $gg \to A \to Zh \to \ell\ell\tau\tau$

Excludes to a cross-section times branching ratio of ~10fb.

$H \rightarrow h(125)h(125) \rightarrow bb(ττ)$ and $A \rightarrow Zh(125) \rightarrow (ℓℓ)(ττ)$

Combination of the two searches performed in two models

Low mass pseudoscalar decaying to ττ

- parameter scan within 2HDM of type II
 - experimental constraints from LEP , Tevatron and LHC are incorporated; light CP even state h is identified with H(125)
- models exist with light A state and large $\sigma(bbA)xBR(A \rightarrow \tau\tau)$ (up to 100 pb)
- cyan points : sign(Y_b) = sign(Y_t)
 - $sin(\beta-\alpha) \approx 1$, $cos(\beta-\alpha) > 0$
- orange points : sign(Y_b) = -sign(Y_t)
 - sin(β±α)≈1, cos(β-α) < 0

Search for low mass A boson decaying to $\tau\tau$

- mass range covered : $m_A = 25 80 \text{ GeV}$
- di-tau decay channels exploited : $e\mu,\ \mu au_{
 m h},\ e au_{
 m h}$
- search targets b-associated production
 - require at least one b-tagged jet $(p_T > 20 \text{ GeV}, |\eta| < 2.4)$
- Soft leptons \rightarrow low p_T cuts (just a little above trigger thresholds)
 - $\tau_h \tau_h$ mode is excluded because of high trigger thresholds on tau p_T (very low acceptance)

Search for low mass A boson decaying to $\tau\tau$

Signal extracted from m_{π} distributions

Search for low mass A boson decaying to $\tau\tau$

- No signal found
- Upper limits on $\sigma(b\bar{b}A) \times \mathcal{B}(A \to \tau\tau)$

 Search excludes nearly all scenarios with wrong sign Y_b of the SM-like h(125) state

NMSSM

- MSSM scenarios with m_{h,A} < m_z are excluded by experimental data from LEP , Tevatron and LHC
- SUSY scenarios are possible, relaxing this constraint
- NMSSM : additional singlet superfield S
 - no gauge interactions
 - interacts with itself and Higgs doublets
- 3 new states : one scalar + one pseudoscalar + one neutralino
- solves μ-problem of MSSM

$$\lambda \hat{S} \hat{H}_u \hat{H}_d \to \mu_{eff} = \lambda \langle S \rangle$$

- light a_1 (h_1) state with large singlet component
- \rightarrow reduced couplings to gauge and fermion fields
 - inaccessible through conventional production modes
 - can be searched via H(125) $\rightarrow a_1a_1$ (h₁h₁)

Search for very light NMSSM Higgs bosons

NMSSM scan (D. Barducci,

 $2m_{\tau} < m_{a_1} < 2m_{\rm b}$

ggh LHC 8 TeV

0.90

 $g_{\rm ggh}/g_{\rm ggh}^{\rm SM}$

0.95

A. Belyaev, S. Moretti)

0.85

 10^{5}

 10^{4}

1000

100

10

0.80

σ(fb)

3 pb

Probed mass range : $[2m_{T}, 2m_{b}]$

- Blue/Cyan: h₁/h₂ SM Higgs boson
- Black/Gray: $\sigma(pp
 ightarrow h_{1/2}^{SM}X)$

 $\sigma(gg \to h_{1,2}) \times BR(h_{1,2} \to a_1 \to 4\tau)$

Signal Topology

- H(125) $\rightarrow 2\phi_1 \rightarrow 4\tau \ (2m_\tau < m_{\phi 1} < 2m_b)$
- considered production mechanism
 gg → H(125)
- considered decays of light $\phi_{_1}$ state

 $\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\tau}_{\mu} + \boldsymbol{\tau}_{1-\text{prong}}$

 require two SS muons (μ[±]μ[±]) well separated in (η,φ) → suppression of QCD, EWK and top pair backgrounds

- collimated products in $\phi_1 \rightarrow \tau \tau$ decays
- small opening angle between muon and track from 1-prong tau (both muon and track coming from the same $\phi_{\mbox{\tiny 1}}$)

Selected sample and Signal Extraction

- Final selected sample is dominated by QCD events
- Signal is extracted from 2D distribution of $m_1 vs. m_2$ (invariant masses of muon-track pairs coming from decays of two ϕ_1 bosons)

 QCD background shape is estimated in sideband, where one of the muon-track pairs is non-isolated

QCD Background Model

Constructing 2D distribution

- The µ-trk pair with higher mass labelled "2"
- binning of 2D distribution used in the analysis
- only non-hatched bins are filled

QCD background normalization unconstrained prior to ML fit

QCD shape is modeled as

 $f_{2D}(i,j) = C(i,j) (f_{1D}(i)f_{1D}(j))^{\text{sym}}$

- $f_{2D}(i,j)$ content of bin (i,j) of normalized 2D distribution
 - $f_{1D}(i)\,$ content of bin i of normalized 1D distribution (see previous slide)
 - C(i, j) mass correlation coefficients, determined in the background control region where muon-track pairs are non-isolated (consistent with unity)

$$(f_{1D}(i)f_{1D}(j))^{\text{sym}} = f_{1D}(i)f_{1D}(j) + f_{1D}(j)f_{1D}(i), \text{ if } i \neq j$$

= $f_{1D}(i)f_{1D}(j), \text{ if } i = j$

Search for H(125) $\rightarrow 2\phi_1 \rightarrow 4\tau$: Results

- Signal extracted with maximum likelihood fit of the 2D $[m_1,m_2]$ distribution
 - QCD background and signal normalizations are varied freely in fits
- Data are well described by background-only model \rightarrow set limits on $\sigma imes \mathcal{B}$

Summary

- CMS is finalizing Run1 Higgs analyses
- Many new results on BSM Higgs searches in decays to tau leptons have been made public recently
- Unfortunately no additional Higgs states have been found so far
 - constraints on model parameters strengthened
- Focus is shifted to the analysis of Run2 data
 - further investigation of properties of H(125) state
 - continue hunt for additional Higgs states predicted in theories extending SM