ATLAS Tau Identification: Electron Fake Rejection in Run II

GÖTTINGEN

Bundesministerium für Bildung und Forschung

GEORG-AUGUST-UNIVERSITÄT

Eric Drechsler 16.11.2015, Mtautau Workshop DESY, Hamburg

Overview

- I. Motivation
- II. Run II Electron Fake Rejection
- III. Efficiency Measurement
 - IV. Summary

- heaviest lepton
 - ➤ mass: 1.777 GeV
 - ~ 87μm decay length
- * hadronic decay channels (" τ ")
 - > 50% (15%) mit 1 (3) charged pions
 - > main backgrounds: jets and electrons

Tau Leptons in ATLAS

- 1. Reconstruction
- 2. Identification discrimination against:
 - a. Jets (multivariate BDT technique)
 - b. Electrons
- 3. Calibration
- 4. Scaling
 - a. scale factors from efficiency measurements

Changes in Run II:

- Performance changes:
 - IBL affecting tau-vertex resolution
 - ➤ calorimeter readout
- new electron rejection method
 - in harmony with electron identification
- reoptimised energy calibration, identification
- Substructure information

Electron Overlap Removal I - Method

- \clubsuit electrons e fake 1-track $\tau\text{-candidates}$
- Run I: additional BDT for identification
- ✤ Run II: align with electron definition
 - > discriminator for e: likelihood score LH
- ertron
- shower shape information from calorimeter
- reconstructed hits in tracking detector
- ➢ TRT information

Electron LH score

→ overlap removal e > τ: EleOLR • dependent on electron LH and τ-candidate kinematics

stable against <mu>

- flat in pseudorapidity and p_T
- cuts tuned

> yield ~95% signal efficiency (Z→ττ)

cuts tuned

Efficiency measurement I - Tag & Probe

✤ aim: derive scale factors for EleOLR method

- \succ efficiency measurement in data and MC
- ✤ define tag- & probe-lepton pair
 - \succ e+ τ final states from Z-decay
 - measure efficiency on probe lepton

Eric Drechsler, 16.11.2015, mtautauWS@DESY

Efficiency measurement II - Bkgd Estimation

ectron

- background contributions:
 - > $Z \rightarrow \tau \tau$, ttbar from simulation
 - W+Jets from simulation + scaling:
 - ★ define pure W region
 - ★ data/MC comparison scalefactors

QCD multijets from data driven method "OS-SS"

- **★** same charge for e and τ in data (SS)
- \star subtract SS simulated events from data
- \star extract shape of QCD background
- \star apply scale factor from QCD region R_{ocD}

Efficiency measurement IV - probe kinematics

- inspection of probe lepton kinematics
 - properties of electrons faking taus
- $\boldsymbol{\diamond}$ good agreement, features under investigation

Efficiency measurement IV - EleOIr application

- ✤ application of EleOLR on events
 - > strongly dependent on electron LLH tune/configuration
 - > discrepancy in high-eta from outdated LLH tune
 - sample purity not yet satisfactory

Eric Drechsler, 16.11.2015, mtautauWS@DESY

Efficiency Measurement V - Efficiency Calculation

- calculate bin-by-bin efficiency in pT and eta
 - > eff_bin = #events after EleOLR / #total events
- \diamond shown with binomial statistical errors
- $\boldsymbol{\diamondsuit}$ calculate on data and MC
 - > extract scalefactor bin by bin

Efficiency measurement V - Next Steps

- optimisation control & signal region definitions
- validation of background estimate
- inclusion of systematics
 - background estimation
 - > efficiencies for electron
 - > electron energy calibration/resolution
- $\boldsymbol{\diamondsuit}$ return cuts for EleOLR for new LH definition

- Run II: important changes for tau leptons in ATLAS
- ✤ new electron rejection
 - ➢ overlap removal EleOLR
 - based on electron likelihood
- $\boldsymbol{\diamond}$ efficiency measurement on data and MC
 - background estimation OS-SS
- extraction of scale factors
 - > from data/MC comparison

