Progress on $Z \rightarrow \tau_{lep} \tau_{had}$ Polarization and Higgs CP Measurements

LARA SCHILDGEN

14th Workshop of the tautau Analysis Working Group

November 17, 2015

Measurement of the τ Polarization in $Z \rightarrow \tau \tau$ Decays

First measurement of the τ lepton polarization P_{τ} in Z boson decays at a hadron collider

$$\mathcal{P}_{\tau} = \frac{N_{\mathrm{R}} - N_{\mathrm{L}}}{N_{\mathrm{R}} + N_{\mathrm{L}}}$$
measure polarization of hadronically decaying tau
$$\tau \rightarrow \rho\nu \rightarrow \pi^{\pm}\pi^{0}\nu$$
angle ψ between π^{\pm} and ρ
in ρ rest frame
$$\cos \psi = \frac{m_{\rho}}{\sqrt{m_{\rho}^{2} - 4m_{\pi}^{2}}} \cdot \frac{E_{\pi^{-}} - E_{\pi^{0}}}{|\vec{p}_{\pi^{-}} + \vec{p}_{\pi^{0}}|}$$

$$\Rightarrow \text{Polarization observable } \Upsilon$$

$$\Upsilon = \frac{E_{\pi^{-}} - E_{\pi^{0}}}{E_{\pi^{-}} + E_{\pi^{0}}} = 2 \cdot \frac{p_{\mathrm{T}}^{Trk}}{p_{\mathrm{T}}^{T}} - 1$$

First measurement of effective Weinberg angle $sin^2\theta_{W,eff}$ in 3rd generation lepton coupling at ATLAS

 $\sin^2\theta_{W,eff}$ depends on generated mass spectrum \implies also provide acceptance (L&R) as function of mass

Lara Schildgen

First measurement of effective Weinberg angle $sin^2\theta_{W,eff}$ in 3rd generation lepton coupling at ATLAS

Preparation for Higgs CP analysis

Lara Schildgen

Polarization in the τ Decay

Charged Current couples to left-handed particles and right-handed anti-particles

Due to Lorentz boost: ρ in flight direction of τ preferred

Lara Schildgen

Polarization in the τ Decay

Lara Schildgen

Polarization in the τ Decay

Lara Schildgen

Event Selection

- exactly 1 isolated lepton
 - p_T > 26 GeV
 - single lepton trigger
- exactly 1 hadronic 1-prong τ
 - p_T > 20 GeV
 - tau ID efficiency $\approx 60 \%$
- lepton and τ opposite sign
- m_T < 30 GeV
- $\sum \Delta \phi < 3.5$

 $\mathcal{BR}(Z \rightarrow \tau \tau) = 3.37 \%$

Background Estimates

Zll, ttbar: from MC

QCD: data driven estimate from SS-control region, transfer from SS to OS region (ABCD method): scale with OS/SS ratio from anti-isolated CR (reversed both lepton isolation requirements)

- **W+jets:** data driven estimate from W enriched control region $(m_T > 70 \text{ GeV}, \Sigma \Delta \phi > 3.5)$:
- subtract non-W+jets MC backgrounds from data in OS WCR
- correct for slope in SR/WCR MC ratio
- transfer to SR: normalize to expected SR cross-section
 - systematic shape uncertainty

Lara Schildgen

W+jets Υ Shape Dependence on $p_{\rm T}$

- 1. Υ shape varies in different bins of p_{T}
- 2. Shape variation stronger in W Control Region data
- \rightarrow need reweighting for transfer from Control to Signal Region

Lara Schildgen

Systematic Shape Uncertainty

WCR data/WCR MC:
mismodeling of data is the same in different p_T bins
→ reweight inclusive distribution

Derive $CR \rightarrow SR \Upsilon$ reweighting from inclusive SR MC/WCR MC

weight Υ shape of WCR data for transfer CR \rightarrow SR with slope

Re-fit SR MC/WCR MC after reweighting Systematic Shape Uncertainty: UP: weight = 0.99198+0.06606 Υ DN: weight = 0.99198 - 0.06522 Υ

Lara Schildgen

Likelihood Fit & Systematics

Y variable in signal region (blinded)

Binned Likelihood Fit:

 fit simultaneously in signal and control regions and in e-had and mu-had channels

Systematic Uncertainties:

- τ energy scale dominant
- include minor standard systematics to the fit
- MC uncertainties on Ζττ templates
- shape uncertainty on W+jets

Lara Schildgen

Likelihood Fit & Systematics

Binned Likelihood Fit:

 fit simultaneously in signal and control regions and in e-had and mu-had channels

Systematic Uncertainties:

- τ energy scale dominant
- include minor standard systematics to the fit
- MC uncertainties on Ζττ templates
- shape uncertainty on W+jets

Current Issues:

- TauSpinner and TAUOLA assign polarization incorrectly for Z+(≥ 1 jet), estimate uncertainty on polarization with TauSpinner/TAUOLA difficult
- have to estimate τ energy scale uncertainty separately for charged and neutral pion content

Higgs CP Measurements in $H \rightarrow \tau\tau$ Decays

- mixture of CP even and odd Higgs predicted by some BSM models \implies mixing angle ϕ_{τ}
- measure mixing using information on <u>transverse</u> τ spin correlations

- reconstruct τ decay planes
- determine angle $\phi \ast_{_{CP}}$ between the decay planes
- measure differential cross-section as function of ϕ^*_{CP}
- determine ϕ_τ from shift of cosine function

Combination of two Reconstruction Methods

 $\tau \longrightarrow \pi^{\pm} \nu$ (1pon)

- reconstruction of $\tau^{\,\pm}$ decay plane
- using 3D impact parameter and primary vertex

ρ Decay Plane Method

$$\tau \longrightarrow \rho^{\pm} \nu \longrightarrow \pi^{\pm} \nu$$
 (1p1n)

- reconstruction of ρ^{\pm} decay plane
- using 4-vectors of π^{\pm} and π^{o}

Use new Run-II decay mode classification & 4-mom reconstruction

Lara Schildgen

Determination of ϕ_{τ}

- $\phi \ast_{CP}^{}$: angle between the τ^{\pm} decay planes
- differential cross-section as function of ${\phi^*}_{CP}$

 ϕ^*_{CP} on Truth Level

- $Z \rightarrow \tau \tau$: flat distribution
- $H \rightarrow \tau\tau$: cos dependence

Summary & Outlook

- First τ polarization measurement in Z → ττ decays at a hadron collider & measurement of effective Weinberg angle in 3rd generation lepton coupling
 - Optimized data driven background estimates
 - Extracted systematic Y shape uncertainty on W+jets background
 - Helps us to understand challenges for Run-II
- CP admixture in $H \rightarrow \tau\tau$ can be extracted from Higgs decay by measuring the angle between the decay planes

Summary & Outlook

- First τ polarization measurement in Z → ττ decays at a hadron collider & measurement of effective Weinberg angle in 3rd generation lepton coupling
 - Optimized data driven background estimates
 - Extracted systematic Y shape uncertainty on W+jets background
 - Helps us to understand challenges for Run-II
- CP admixture in H→ ττ can be extracted from Higgs decay by measuring the angle between the decay planes

Thank you!

The τ Lepton

- heaviest lepton $m_{\tau} = 1777 \text{ MeV}$
- extreme short lifetime of 290 · 10⁻¹⁵ s
- decay length of $87 \, \mu m$

Quick Reminder on Polarization

Polarization in a sample composed of right- and lefthanded taus:

$$\mathcal{P}_{\tau} = \frac{\sigma_{\mathsf{R}} - \sigma_{\mathsf{L}}}{\sigma_{\mathsf{R}} + \sigma_{\mathsf{L}}}$$

Polarization Observable Υ

Upsilon Calculation

$$P_{\tau} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \qquad \qquad \Upsilon = \frac{E_{ch} - E_{\pi^0}}{E_{ch} + E_{\pi^0}}$$

but: E_{π^0} not reconstructed

instead: total transverse calorimeter energy $E_{\rm T}$ (evtsel_tau_et) transverse momentum of charged tracks $p_{\rm T}^{\rm Trk}$ (tau_leadTrkPt)

$$E_{\mathrm{T}}^{\pi^{0}} = E_{\mathrm{T}} - p_{\mathrm{T}}^{\mathrm{Trk}}$$

$$\Upsilon = \frac{p_{\rm T}^{\rm Trk} - (E_{\rm T} - p_{\rm T}^{\rm Trk})}{p_{\rm T}^{\rm Trk} + (E_{\rm T} - p_{\rm T}^{\rm Trk})} = \frac{2p_{\rm T}^{\rm Trk}}{E_{\rm T}} - 1$$

Modeling of Real Taus

To improve the tau $p_{\rm T}$ modeling of signal MC: apply reweighting of Z boson $p_{\rm T}$

Modeling of Real Taus

Kinematic Modeling (muon channel)

Kinematic Modeling (electron channel)

Study of Υ Shape Variation in W+jets

Does Υ shape depend on jet p_{T} ?

W+jets MC shows different tau $p_{\rm T}$ distributions in W Control Region and Signal Region

→ motivates studies of $p_{\rm T}$ binned Υ distribution

 \rightarrow extract systematic Υ shape uncertainty

Validation Regions

Verify p_T dependence in Validation Regions - reminder: WCR evtsel_transverseMass>70., evtsel_dPhiSum>3.5 SR evtsel_transverseMass<30., evtsel_dPhiSum<3.5 Validation Regions - cuts like SR, except: VR1 30.<evtsel_transverseMass<70., evtsel_dPhiSum>3.5 VR2 30.<evtsel_transverseMass<70., evtsel_dPhiSum<3.5</p>

$\rightarrow ~~pprox 2\sigma$ deviation from 0

Lara Schildgen

Measurement of the τ polarization at ATLAS

Study of Y Shape Variation in W+jets

Does Y shape depend on quark-gluon fraction?

Angle between Decay Planes

The ATLAS Detector

