Belle & Belle II

Simon Wehle & Ami Rostomyan 80th PRC Open Session Hamburg, 22.10.2015

First Generation of B-Factories

Belle:

- > ~ 771 M BB pairs
- > ~ 900 M tau and muon pairs
- > Results compatible with SM
- Not significant hints on deviations from SM Still many analysis limited in statistics!

First Generation of B-Factories

Belle→Belle II

Upgrade of all Belle sub-detectors to cope with higher particle fluxes associated with higher luminosity and beam currents.

Hardware

Belle II Vertex Detectors (VXD)

VXD consists of:

- > Pixel Vertex Detector (PXD)
- Silicon Vertex Detector (SVD)
 - share a common volume

PXD and SVD - one integrated system DESY contribution:

- > CO₂ cooling tests
- Test beam (next planned in April 2016 at DESY)
- > Installation
- > Commissioning

Belle II Vertex Detector and Cooling System

SCB (Support & Cooling Block) with 2-phase CO₂ and N₂ channels

Requirements (PXD):

- Sensor: < 25°C → minimise noise due
- to leakage currents
- > Read out: < 50°C
 → avoid risk of
 electro-migration
- Total energy dissipation ~360W

2 layers with 40 DEPFET pixel sensors with 8 million pixels in sensitive area

Belle II Vertex Detector and Cooling System

2 layers with 40 DEPFET pixel sensors with 8 million pixels in sensitive area

PCBs Origami cooling

4 layers of double-sided Silicon Strip Detectors (DSSD).

SCB (Support & Cooling Block) with 2-phase CO₂ and N₂ channels

Requirements (PXD):

- Sensor: < 25°C
 → minimise noise due
 - to leakage currents
- > Read out: < 50°C
 → avoid risk of
 electro-migration
- Total energy dissipation ~360W

Requirements: (SVD):

- Read out chips' (APV25) surface at about 0°C
 - → SNR improvement
- Total energy dissipation
 ~700W

Belle II | 80th PRC Open Session

VXD Thermal Mock-up at DESY

The thermal mock-up is built to study and optimise the cooling system for the Belle II vertex detector.

SVD Dummy

adders

SVD parts are under preparation.

Belle II | 80th PRC Open Session

PXD

Belle II Detector: Temperature Gradient on PXD Ladders

Pt100s on PXD

Belle II Detector: Remote Vacuum Connection

RVC is essential component to interface SuperKEKB with Belle II

Belle II Detector: Remote Vacuum Connection

RVC is essential component to interface SuperKEKB with Belle II

Belle II Detector: Remote Vacuum Connection

RVC is essential component to interface SuperKEKB with Belle II

- > All components for forward and backward RVC ready at DESY
- > Detailed mechanical and vacuum tests in the coming months
- Installation at KEK in spring 2017

Software

10-20 times higher background than at Belle \rightarrow fake hits, radiation damage...

10-20 times higher background than at Belle \rightarrow fake hits, radiation damage...

- > Main background sources from
 - **1.** scattered beam particles

Touschek scattering

3. synchrotron radiation

2. physics processes

Radiative Bhabha

2-photon process

10-20 times higher background than at Belle \rightarrow fake hits, radiation damage...

2. physics processes

- > Main background sources from
 - **1.** scattered beam particles

DESY contribution: estimate the synchrotron radiation

> PXD: allowed limit for occupancy from all background sources: 3%

- all sources except synchrotron radiation: ~ 1%
- the limit of occupancy for synchrotron radiation (with a safety margin of 1%): ~ 1%
- > Result of synchrotron radiation simulation essential for decision on beam pipe coating

Simulation is basis for decision on thickness of beam pipe coating

10-20 times higher background than at Belle \rightarrow fake hits, radiation damage...

2. physics processes

- Main background sources from
 - **1.** scattered beam particles

DESY contribution: estimate the synchrotron radiation

> PXD: allowed limit for occupancy from all background sources: 3%

- all sources except synchrotron radiation: ~ 1%
- the limit of occupancy for synchrotron radiation (with a safety margin of 1%): ~ 1%
- > Result of synchrotron radiation simulation essential for decision on beam pipe coating Simulation is basis for decision on thickness of beam pipe coating
- Choices of beam pipe coating thickness \rightarrow will be decided this week
- > thinner gold coating \rightarrow better vertex resolution
- > thicker gold coating \rightarrow better absorption of synchrotron radiation

Belle II Software: Alignment and Calibration

DESY leads the alignment and calibration group

- > Alignment:
 - tracking detectors integrated in the framework
 - using Millepede II and General Broken Line (GBL) track fit MPII
 - Tested for PXD, SVD and CDC on Monte Carlo and beam-test data
 - Tracking with GBL ready for KLM \rightarrow alignment of KLM in progress
- > General Calibration activity → calibration framework
 - separate common alignment/calibration tasks from individual detector algorithm implementations
 - first example of non-alignment calibration (KLM) included

Belle II Software: Alignment Validation Tools

number of events

1. DESY contribution: Alignment validation

 Vertex reconstruction of D⁰ using vertices of two pairs (same charge, different charge)

Belle II Software: Alignment Validation Tools

1. DESY contribution: Alignment validation

 Vertex reconstruction of D⁰ using vertices of two pairs (same charge, different charge)

(helix representation)

www.same charged

2. DESY contribution: Validation procedure using cosmic rays

- Generation of cosmic-ray muons using cosmic-shower generator
- Comparison of reconstructed track parameters in top vs bottom
- > For ideal alignment
 - No difference between mean values
 - No correlations

Belle II: B-Field

Precise knowledge of the magnetic field is essential in the presence of the final focus magnets. Goal: $\Delta B/B < 0.1\%$

- > B-field measurement possible only
 - before VXD installation
 - in limited regions
- > Rely on calculation/simulation
 - 3D calculation of Belle II B-field

DESY leading B-field measurement task force:

- Implications on physics performance studies using 3D simulation of Belle II B-field
- Constrain B-field from data within alignment
 & calibration using Millepede II / GBL track fit
 - \rightarrow DESY expertise

Analysis

Standard Model

(SM)

Searches for New Physics (NP)

Belle Analysis: Light Quark Fragmentation

$$e^+ + e^- \to \gamma^* \to (h_1^1 h_2^1) + (h_1^2 h_2^2) + X$$

Study the spin-dynamics of hadronisation

> measure azimuthal correlations between two pairs of charged pions in opposite hemispheres

fragmentation of <i>transversely</i> polarised quarks:	$H_1^{\perp}, \ H_1^{\triangleleft}$
fragmentation of <i>longitudinally</i> polarised quarks:	G_1^{\perp}

Belle Analysis: Light Quark Fragmentation

$$e^+ + e^- \to \gamma^* \to (h_1^1 h_2^1) + (h_1^2 h_2^2) + X$$

Study the spin-dynamics of hadronisation

measure azimuthal correlations between two pairs of charged pions in opposite hemispheres

Belle → Belle II: PYTHIA8 tuning

Understanding of the continuum spectrum

- > important task for itself
- background in, e.g., B decays

Continuum simulation in BASF2:

> old framework: EvtGen + PYTHIA

Belle → Belle II: PYTHIA8 tuning

Understanding of the continuum spectrum

- > important task for itself
- background in, e.g., B decays

Continuum simulation in BASF2:

- > old framework: EvtGen + PYTHIA
- > new framework: KKMC+ PYTHIA8 + EvtGEN

Belle → Belle II: PYTHIA8 tuning

Understanding of the continuum spectrum

- > important task for itself
- background in, e.g., B decays

Continuum simulation in BASF2:

- > old framework: EvtGen + PYTHIA
- > new framework: KKMC+ PYTHIA8 + EvtGEN

DESY contribution: The new framework of continuum generation is ready and validated

- > towards the Pythia8 tuning
 - tuning tool for Monte Carlo generators: Professor

Belle Analysis: Angular Analysis of $B \rightarrow K^*l^+l^-$

 $B \rightarrow K^* \ l^+l^-$:

 \rightarrow b \rightarrow s flavour-changing neutral current

→ suppressed within the SM

Belle Analysis: Angular Analysis of $B \rightarrow K^{*}l^{+}l^{-}$

 $\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{l}^+ \mathbf{l}^-$:

 \rightarrow b \rightarrow s flavour-changing neutral current

 \rightarrow suppressed within the SM

> LHCb: evidence for rare decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$

discrepancy for $P'_5 : \sim 3.7\sigma$

Phys. Rev. Lett. 111 (2013), 191801

 $A_{\rm FB}$

 q_0^2 $F_{\rm L}$

 S_3 S_3

 S_7

 S_9

 A_9

 $A_{\rm T}^2$

 $A_{\mathrm{T}}^{\mathrm{Re}}$

 $A_{\rm CD}$

Belle Analysis: Rare Decay $B \rightarrow K\tau^+\tau^-$

- > LHCb: hints for R_K anomaly
 - standard model: $R_K = 1$
 - discrepancy: ~ 2.6σ

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

possible interpretation: Z'coupling causes violation of lepton universality

Belle Analysis: Rare Decay $B \rightarrow K\tau^+\tau^-$

- > LHCb: hints for R_K anomaly
 - standard model: $R_K = 1$
 - discrepancy: ~ 2.6σ

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

- possible interpretation: Z´coupling causes violation of lepton universality
- > Belle: $B \rightarrow K\tau^+\tau^-$
 - SM expectation BR ~1.5x10⁻⁷

Belle Analysis: Rare Decay $B \rightarrow K\tau^+\tau^-$

- > LHCb: hints for R_K anomaly
 - standard model: $R_{K} = 1$
 - discrepancy: $\sim 2.6\sigma$

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

possible interpretation: Z'coupling causes violation of lepton universality

 e^- (8 GeV)

- Belle: $B \rightarrow K\tau^+\tau^-$
 - SM expectation BR $\sim 1.5 \times 10^{-7}$

- > BaBar: B $\rightarrow K\tau^+\tau^-$ (preliminary) <u>SLAC-PUB-15513 (2010)</u>
 - upper limit of 3.3×10^{-3} at 90% C.L.

Expected Belle sensitivity based on MC data

- upper limit of ~ 4×10^{-4} at 95% C.L.
- box opening in the next weeks

Belle \rightarrow Belle II Analysis: Rare Decay $B \rightarrow K^{(*)}vv$

$B \rightarrow K^{(*)} vv$:

- → b→s flavour-changing neutral current
- \rightarrow suppressed within the SM
- → golden mode of Belle II because theoretically very clean: free of uncertain long-distant hadronic effects

Belle \rightarrow Belle II Analysis: Rare Decay $B \rightarrow K^{(*)}vv$

$B \rightarrow K^{(*)} vv$:

- \rightarrow b \rightarrow s flavour-changing neutral current
- \rightarrow suppressed within the SM
- → golden mode of Belle II because theoretically very clean: free of uncertain long-distant hadronic effects

Why at Belle II?

- > Can be measured only in e⁺e⁻, experimentally challenging
- > Existing limits from BABAR and Belle leave room for NP

$$\mathcal{BR}(B^+ \to K^+ \nu \bar{\nu})_{(SM)} = (3.98 \pm 0.43 \pm 0.19) \times 10^{-6}$$

$$< 1.7 \times 10^{-5} \text{ (BaBar)}$$

$$\mathcal{BR}(B^0 \to K^{*0} \nu \bar{\nu})_{(SM)} = (9.19 \pm 0.86 \pm 0.50) \times 10^{-6}$$

$$< 5.5 \times 10^{-5} \text{ (Belle)}$$

Belle \rightarrow Belle II Analysis: Rare Decay $B \rightarrow K^{(*)}vv$

$B \rightarrow K^{(*)} vv$:

- \rightarrow b \rightarrow s flavour-changing neutral current
- \rightarrow suppressed within the SM
- → golden mode of Belle II because theoretically very clean: free of uncertain long-distant hadronic effects

Why at Belle II?

- > Can be measured only in e⁺e⁻, experimentally challenging
- > Existing limits from BABAR and Belle leave room for NP

$$\mathcal{BR}(B^+ \to K^+ \nu \bar{\nu})_{(SM)} = (3.98 \pm 0.43 \pm 0.19) \times 10^{-6}$$

< 1.7 × 10⁻⁵ (BaBar)
$$\mathcal{BR}(B^0 \to K^{*0} \nu \bar{\nu})_{(SM)} = (9.19 \pm 0.86 \pm 0.50) \times 10^{-6}$$

< 5.5 × 10⁻⁵ (Belle)

JHEP 1502, 184 (2015)

Sensitivity with full Belle II data

SM expectation for exclusive $B \rightarrow K^{(*)}vv$ can be probed at 5σ level

arch for lepton-flavour-violating decays of a Higgs boson to a μ - τ pair, based **Ings** et collected by CMS in 2012 is presented. It improves upon previously t limits [4, 23] by an order of magnitude. A slight excess of events with a FLEW Yukawa couplings [4]. The Belle II | 80th PRC Open Session sumed flavour-violating Yukawa

t limits [4, 23] by an order of magnitude. A slight excess of events with a Belle II | 80th PRC Open Session sumed flavour-violating Yukawa

sumed flavour-violating Yukawa

Belle & Belle II Analysis: Searches of Dark Matter

Belle & Belle II Analysis: Searches of Dark Matter

Belle & Belle II Analysis: Searches of Dark Matter

Belle II Analysis: Possible Extensions

Belle II Analysis: Possible Extensions

Belle II | 80th PRC Open Session

Outlook

DESY

- Prominent hardware contributions
- > Important software contributions
- Strong computing contribution
 - usage of the NAF2.0
 - GRID resources for MC simulation

> Belle analyses

- approach publication stage
- in the internal reviews

> Belle II analysis

 preparation for searches for New Physics complementary to LHC experiments

Back up

Belle II and LHCb Luminosity Projections

Integrated Luminosity

Belle II Software: Estimation of the Synchrotron Radiation

Choices of beam pipe thickness:

- > thinner gold plate \rightarrow better vertex resolution
- > thicker gold plate \rightarrow better absorption of synchrotron radiation
 - for Phase $2 \rightarrow 6.6 \mu m$
 - for Phase $3 \rightarrow$ will be decided this week

PXD occupancy (HER) normalised to Phase3 beam current

Synchrotron background simulation for phase 2 and 3 (PXD and SVD installed) for different thickness of gold plating

Maximum occupancy for Phase3

10µm	6.6µm	5µm
(0.01 — 0.05)%	(0.015 — 0.1)%	(0.025 — 0.15)%

Still acceptable occupancy values for PXD even for 5µm of gold plating.

FIG. 5: LFV UL (90% C.L.) results from CLEO, BaBar and Belle, and extrapolations for Belle II (50 ab^{-1}) and LHCb updgrade (50 fb^{-1}).

