Naturally light uncolored and heavy colored superparticles

Gautam Bhattacharyya

Saha Institute of Nuclear Physics, Kolkata

G.B., B. Bhattacherjee, T.T. Yanagida and N. Yokozaki PLB 725 (2013) 339 <u>and</u> PLB 730 (2014) 231

G.B., T.T. Yanagida and N. Yokozaki, PLB 749 (2015) 82

Naturally light uncolored and heavy colored superparticles - p. 1

Motivation

- Squarks and gluino are heavy
 - $m_h = 125 \text{ GeV}$
 - \Rightarrow stop \sim TeV (large mixing) or more (small mixing)
 - FCNC \Rightarrow first two generation squarks heavy and degenerate
 - Non-observation of squarks and gluino in 7 and 8 TeV LHC
- Sleptons and weak gauginos may be light
 - Muon (g-2) has > 3σ discrepancy \Rightarrow light smuons
 - Neutralino as DM expected in $\mathcal{O}(100)$ GeV range
 - Light staus may slightly alter Higgs diphoton rate
 - Collider bounds on them are not so strong

How to reconcile this splitting between colored and uncolored superparticles?

GMSB – basic introduction

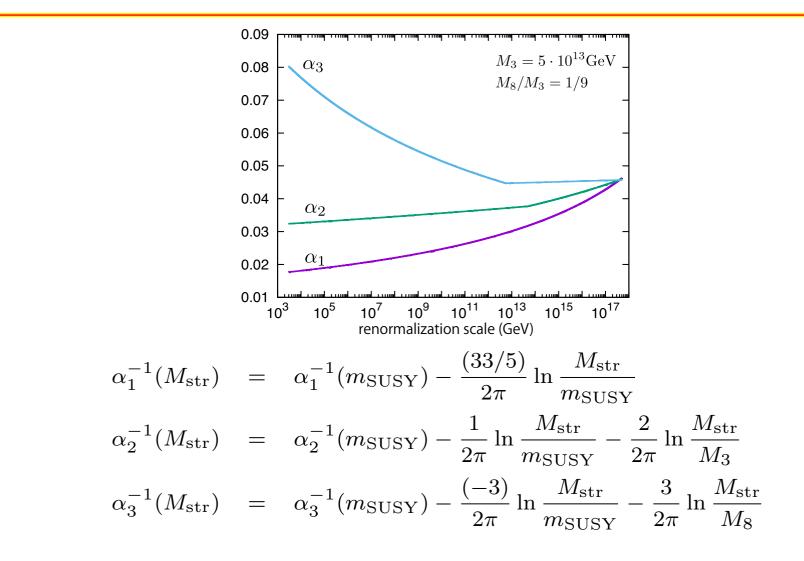
- Information on SUSY breaking is transmitted to observable sector by gauge interaction. FCNC is suppressed.
- Messenger sector' comprising of heavy chiral superfields which have gauge charges. SUSY is broken in messenger sector by interaction with 'spurion'. Consider a set of vector-like superfields $M + \overline{M}$ (e.g. $5 + \overline{5}$ and/or $10 + \overline{10}$ of SU(5) GUT). Complete multiplets do not spoil gauge coupling unification.
- Minimal scenario: $W = \lambda X M \overline{M}$. The messenger fermions acquire a supersymmetric mass $m = \lambda \langle X \rangle$ and messenger scalars are split: $m_{\pm}^2 = m^2 \pm \lambda \langle F_X \rangle$. SUSY breaking scale $\Lambda \equiv \langle F_X \rangle / \langle X \rangle$.
- Gaugino masses are generated at one-loop while sfermion masses are generated at two-loop. When $\Lambda << M$ (~ 100 TeV $< M < M_{Pl}$)

$$m_{\tilde{\lambda}_i} \simeq \frac{\alpha_i}{4\pi} \Lambda, \quad \tilde{m}^2 \simeq 2\Lambda^2 \frac{\sum_i c_i \alpha_i^2}{16\pi^2}$$

- Gravitino mass $m_{\tilde{G}} \sim \frac{F}{M_{Pl}}$ is in general much lighter (than in supergravity). It can be ~ 100 eV. In general gravitino is the LSP. Distinct signatures.
- $igsquir \mu$ and B_μ problem! Essentially, $B_\mu \sim \mu \Lambda$.

Fusion of three issues

- Gauge coupling unification even with incomplete multiplets at string scale > GUT scale (Bachas, Fabre, Yanagida '96; Bastero-Gil, Brahmachari '97).
 - Adjoint octet (Σ_8) of color SU(3), adjoint triplet (Σ_3) of weak SU(2)
 - Origin of these states can be traced to the adjoint 24-plet of SU(5)
- Presence of intermediate states characterizing GMSB.


 $W_{\text{mess}} = (M_8 + \lambda_8 X) \operatorname{Tr}(\Sigma_8^2) + (M_3 + \lambda_3 X) \operatorname{Tr}(\Sigma_3^2)$

F-term vev of hidden sector field X transmits SUSY breaking to visible sector via messenger multiplets.

Dynamically ensure $\tilde{m}_{color} >> \tilde{m}_{uncolor}$ by delinking the sources of mass generation for colored and uncolored super-particles (Han, Yanagida, Zhang '98).

Aim is to reproduce m_h , $(g-2)_\mu$, and other data

Unification with Σ_3 **and** Σ_8

 $m_{SUSY} \equiv (m_{Q_3} m_{\bar{U}_3})^{1/2}$ is the average stop mass. $\alpha_{1,2,3}^{-1} \simeq (57, 31, 13)$ at $m_{SUSY} = 3$ TeV.

Unification – key issues

For unification,
$$M_3 > M_8$$
 at one-loop.
For $M_{\rm str} = 10^{17}(10^{18})$ GeV, $M_3/M_8 = 7(18)$.

$$M_{
m str}^2 m_{
m mess} = M_{
m GUT}^3$$
 where $m_{
m mess} \equiv \sqrt{M_3 M_8}$.

Late Unification avoids proton decay constraints: $p \rightarrow K^+ \nu$ goes like $1/m_{H_c}^2$ where $m_{H_c} \sim M_{\rm str} \sim 10^{17-18}$ GeV.

Sparticle masses at mess scale

9 Define
$$\Lambda_8 \equiv rac{\lambda_8 F_X}{M_8}$$
, $\Lambda_3 \equiv rac{\lambda_3 F_X}{M_3}$

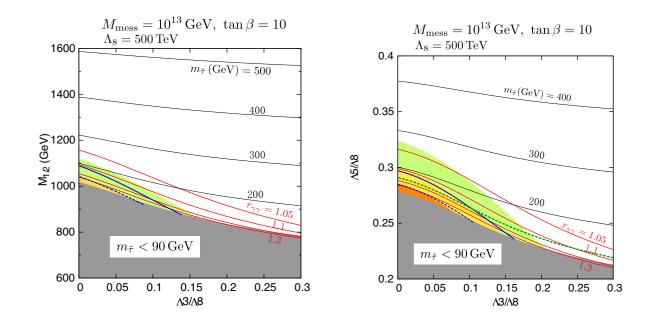
P Recall $M_3 > M_8$ (unification), tune λ_8 and λ_3 to ensure $\Lambda_8 \gg \Lambda_3$

Messenger scale spectrum

$$\begin{split} m_{\tilde{B}} &\simeq 0, \ m_{\tilde{W}} \simeq \frac{g_2^2}{16\pi^2} (2\Lambda_3), \ m_{\tilde{g}} \simeq \frac{g_3^2}{16\pi^2} (3\Lambda_8) \\ m_{\tilde{Q}}^2 &\simeq \frac{2}{(16\pi^2)^2} \left[\frac{4}{3} g_3^4 (3\Lambda_8^2) + \frac{3}{4} g_2^4 (2\Lambda_3^2) \right], \ m_{\tilde{D}}^2 = m_{\tilde{U}}^2 \simeq \frac{2}{(16\pi^2)^2} \frac{4}{3} g_3^4 (3\Lambda_8^2), \\ m_{\tilde{L}}^2 &\simeq \frac{2}{(16\pi^2)^2} \frac{3}{4} g_2^4 (2\Lambda_3^2), \ m_{\tilde{E}}^2 \simeq 0 \end{split}$$

No messenger is charged under U(1). Right-handed slepton and Bino masses are generated by Planck scale suppressed gravitational interaction and are of the order of the gravitino mass.

$$m_{\tilde{E}}(M_{\rm str}) \sim M_{\tilde{B}}(M_{\rm str}) \sim m_{3/2} \sim \frac{F_X}{M_P}$$


Sample spectra with $\Sigma_{3,8}$

Λ_3/Λ_8	0.10	
Λ_8	500 TeV	
$M_{1/2}$	920 GeV	
$M_{ m mess}$	10^{13} GeV	
aneta	10	
μ	5.9 TeV	
$m_{ m stop}$	8.2 TeV	
δa_{μ}	1.24×10^{-9}	
$m_{ m gluino}$	10 TeV	
$m_{ m squark}$	9.4 TeV	
$m_{{\tilde e}_L}(m_{{\tilde \mu}_L})$	601 GeV	
$m_{{ ilde e}_R}(m_{{ ilde \mu}_R})$	258 GeV	
$m_{ ilde{ au}_1}$	98 GeV	
$m_{\chi^0_1}$	315 GeV	
$m_{\chi_1^{\pm}}$	851 GeV	

Phenomenology with $\Sigma_{3,8}$

- Due to large left-right stau mixing, one stau can be very light. Light stau can modify diphoton BR of Higgs by 10-20%.
- Stau is the NLSP, with gravitino LSP. However, stau is long-lived, as its decay to gravitino of the same order mass is suppressed. CMS limit: $m_{\tilde{\tau}} > 340$ GeV. This is too heavy for sizable diphoton contribution.
- This implies smuon is too heavy to explain muon (g-2) anomaly.
- Way out: Allow mild ($\leq 10^{-7}$) RPV, so that stau can promptly decay to a lepton and neutrino. Then stau can be lighter than 340 GeV. Then muon g-2 can be explained at slightly better than 2σ level. Perhaps not any more!!
- Can we avoid RPV?

muon (g-2)

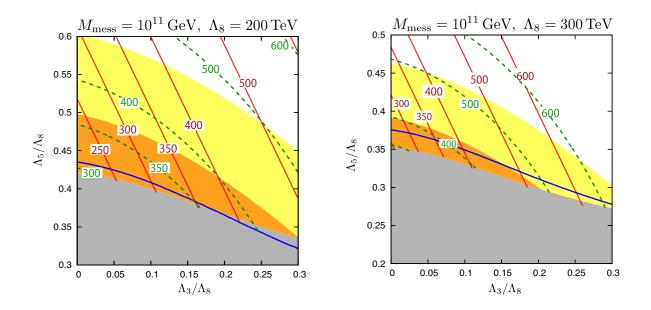
<u>Key point</u>: Bino/stau and gravitino mass generation de-linked. Gravitino can be ultra-light, while bino/stau can weigh around 100 GeV (since 5-plets have non-zero Y). Bino/stau mass $\propto \Lambda_5$.

Unification is not affected by complete multiplets.

Region below blue solid line is excluded by vac stability limit arising from large LR slepton mixing, which sets an upper limit on $\mu \tan \beta$.

Further improvements

- Including 3-loop corrections to m_h , stop mass in (3-5) TeV range even with minimal mixing can reproduce $m_h = 125$ GeV (Feng et al '13).
- Since SUSY breaking scale comes down, μ gets smaller.


$$\mu^2 \sim (-m_{H_u}^2) \sim \frac{3}{4\pi^2} y_t^2(m_{\text{stop}}^2) \ln\left(\frac{M_{\text{mess}}}{m_{\text{stop}}}\right)$$

- LR mixing also goes down. So $\tilde{\tau_1}$ need not be that light.
- Bino/RH-slepton and gravitino masses de-correlated, thanks to 5-plets. Bino is NLSP. At messenger scale $m_{\tilde{B}} = \frac{\alpha_1}{4\pi} \Lambda_5$, $m_{\tilde{E}}^2 = \frac{1}{8\pi^2} \left[\frac{3}{5} \alpha_1^2 \Lambda_5^2 \right]$.
- Gravitino can be made light

$$m_{3/2} \simeq 0.01 \,\mathrm{GeV}\left(\frac{\Lambda_8}{200 \mathrm{TeV}}\right) \left(\frac{(\Lambda_3/\Lambda_8)}{0.2}\right) \left(\frac{M_8}{10^{11} \mathrm{GeV}}\right) \left(\frac{(M_3/M_8)}{10}\right)$$

100 GeV Neutralino decays into 10 MeV gravitino in a BBN safe way (Kawasaki et al '08). <u>No need of RPV.</u>

Muon (g-2) (updated)

(g-2)_µ is dominated by bino-smuon loop. In the orange (yellow) region it is explained at 1 (2)- σ level. In the gray region, stau is lighter than 90 GeV.

$$(\Delta a_{\mu})_{\text{SUSY}} \simeq \frac{3}{5} \frac{g_1^2}{8\pi^2} \frac{m_{\mu}^2 \mu \tan \beta}{M_1^3} F_b \left(\frac{m_{\tilde{L}}^2}{M_1^2}, \frac{m_{\tilde{E}}^2}{M_1^2}\right)$$

Viable regions are <u>above</u> the blue solid line where bino is NLSP. A stau NLSP is stable inside the detector (hence > 340 GeV (CMS '13)), which makes smuons too heavy!

Focus point

A region where EWSB seems natural even if superparticles are very heavy. One or more fixed ratios of soft SUSY breaking parameters are introduced which reduce the fine-tuning of the potential.

In GMSB, F.P. was achieved with different number of weakly (N_2) and strongly (N_3) interacting messenger multiplets. But gauge couplings do not unify (Brummer, Buchmuller'12; Brummer, Ibe, Yanagida'13).

The EWSB conditions are

$$\frac{g_1^2 + g_2^2}{4}v^2 = \left[-\mu^2 - \frac{\left(m_{H_u}^2 + \frac{1}{2v_u}\frac{\partial\Delta V}{\partial v_u}\right)\tan^2\beta}{\tan^2\beta - 1} + \frac{m_{H_d}^2 + \frac{1}{2v_d}\frac{\partial\Delta V}{\partial v_d}}{\tan^2\beta - 1}\right]_{m_{\rm SUSY}},$$

$$\frac{\tan^2\beta + 1}{\tan\beta} = \left[\frac{1}{B\mu}\left(m_{H_u}^2 + \frac{1}{2v_u}\frac{\partial\Delta V}{\partial v_u} + m_{H_d}^2 + \frac{1}{2v_d}\frac{\partial\Delta V}{\partial v_d} + 2\mu^2\right)\right]_{m_{\rm SUSY}}.$$

where ΔV is the one-loop correction to the Higgs potential.

RG running and cancellations

- I $m_{H_u}^2$ (weak) receives negative contributions from colored super-partners.
- \square $m_{H_u}^2$ (weak) receives positive contribution from wino loop and tree level $m_{H_u}^2$.

$$\begin{split} m_{H_{u}}^{2}(3\text{TeV}) &= 0.704m_{H_{u}}^{2} + 0.019m_{H_{d}}^{2} \\ &- 0.336m_{Q}^{2} - 0.167m_{\bar{U}}^{2} - 0.056m_{\bar{E}}^{2} \\ &+ 0.055m_{L}^{2} - 0.054m_{\bar{D}}^{2} \\ &+ 0.011M_{\tilde{B}}^{2} + 0.192M_{\tilde{W}}^{2} - 0.727M_{\tilde{g}}^{2} \\ &- 0.003M_{\tilde{B}}M_{\tilde{W}} - 0.062M_{\tilde{W}}M_{\tilde{g}} - 0.010M_{\tilde{B}}M_{\tilde{g}} \end{split}$$

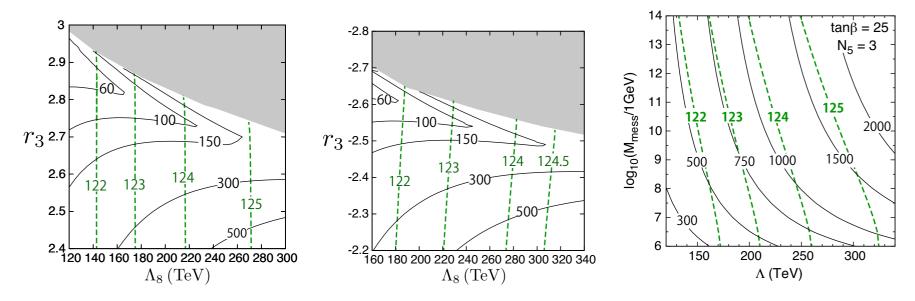
$$m_{H_u}^2({\rm weak}) ~\sim~ 0.9 ~m_{
m uncolor}^2 ~-~ 1.3 ~m_{
m color}^2$$

In minimal GMSB with 5 and $\overline{5}$ messengers, the negative contributions substantially dominate over the positive contributions.

RG invariant parameter

With only Σ_3 and Σ_8 messengers, introduce

$$r_3 \equiv \frac{\Lambda_3}{\Lambda_8} = \frac{\lambda_3 M_8}{\lambda_8 M_3}$$

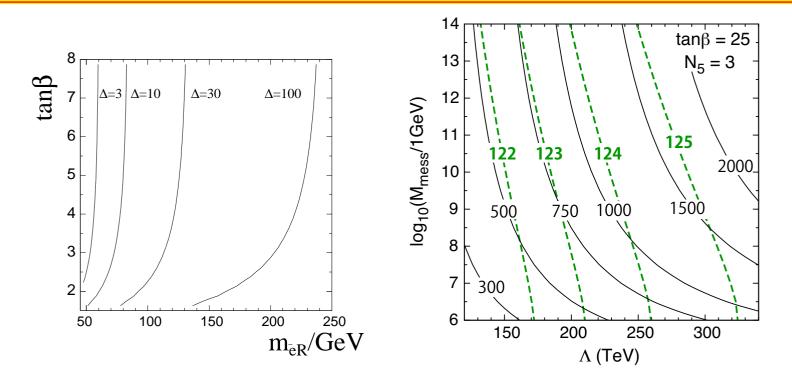

This parameter is RG invariant

$$\begin{aligned} \lambda_{(3,8)}(t) &= \lambda_{(3,8)}(t_0) \exp\left[\int_{t_0}^t dt'(\gamma_X + 2\gamma_{\Sigma_{(3,8)}})\right] \\ M_{(3,8)}(t) &= M_{(3,8)}(t_0) \exp\left[\int_{t_0}^t dt'(2\gamma_{\Sigma_{(3,8)}})\right] \\ &\frac{\lambda_3(t)M_8(t)}{\lambda_8(t)M_3(t)} = \frac{\lambda_3(t_0)M_8(t_0)}{\lambda_8(t_0)M_3(t_0)} \end{aligned}$$

Focus point in AM-GMSB

 $m_{H_u}^2(3\text{TeV}) \simeq [0.16 r_3^2 - 1.2] M_{\tilde{g}}^2$

For $r_3 \simeq 2.8, -2.6$ we achieve Focus Point region



- In the gray region the EWSB does not occur. $M_{\rm mess} = 10^{13}$ GeV.
- \square $\Delta = 60 150$ for $r_3 = 2.8$ to explain the observed m_h .
- \blacksquare For minimal GMSB, $\Delta = 750 1000$ to explain $m_h > 125$ GeV for $M_{\rm mess} > 10^9$ GeV.

Sample spectra for Focus Point

P1		P2		P3	
Λ_8	180 TeV	Λ_8	280 TeV	Λ_8	230 TeV
r_3	2.8	r_3	8/3	r_3	-2.55
$\tan eta$	15	$\tan eta$	15	aneta	15
m_h	123.1 GeV	m_h	125.1 GeV	m_h	123.0 GeV
Δ	69	Δ	156	Δ	91
μ	538 GeV	μ	850 GeV	μ	652 GeV
$m_{ m gl}$	3.6 TeV	$m_{ m gl}$	5.4 TeV	$m_{ m gl}$	4.5 TeV
$m_{ m sq}$	3.4 - 4.5 TeV	$m_{ m sq}$	5.1 - 6.7 TeV	$m_{ m sq}$	4.2 - 5.5 TeV
$m_{ m st}$	2.2, 4.1 TeV	$m_{ m st}$	3.4, 6.2 TeV	$m_{ m st}$	3.1, 5.1 TeV
$m_{{\tilde e}_L}$	3.1 TeV	$m_{{ ilde e}_L}$	4.5 TeV	$m_{{ ilde e}_L}$	3.6 TeV
$m_{\tilde{e}_R}$	473 GeV	$m_{ ilde{e}_R}$	727 GeV	$m_{{ ilde e}_R}$	618 GeV
$m_{ ilde{ au}_1}$	221 GeV	$m_{ ilde{ au}_1}$	399 GeV	$m_{ ilde{ au}_1}$	394 GeV
$m_{\chi^0_1}$	128 GeV	$m_{\chi^0_1}$	124 GeV	$m_{\chi^0_1}$	131 GeV
$m_{\chi_1^{\pm}}$	550 GeV	$m_{\chi_1^{\pm}}$	870 GeV	$m_{\chi_1^{\pm}}$	670 GeV
$m_{\chi^{\pm}_2}$	2.6 TeV	$m_{\chi_2^{\pm}}$	3.8 TeV	$m_{\chi^{\pm}_2}$	3.1 TeV

F.T. 'then' and 'now'

Years ago, $\Delta \sim 50$ for $M \sim 10^5$ TeV and it was worse than mSUGRA then (G.B., Romanino 1997).

In 20 years it has gone up by a factor of ~ 20 .

Conclusions

- Does naturalness demand that super-particles all have to be simultaneously heavy? OR, sleptons/weak gauginos can remain significantly lighter than squarks/gluino by internal dynamics?
- Key observation: With unconventional choice of messenger multiplets, a color SU(3) octet and a weak SU(2) triplet, GMSB works:
 - unification at string scale (between GUT and Planck scale).
 - \square colored mass \gg uncolored mass of sparticles by intrinsic dynamics.
 - Introducing in addition the SU(5) 5-plets, it is possible to explain Muon (g-2) within 1 σ . Scenario fine-tuned with $\mu \sim \text{few TeV}$.
 - If we give up (g 2), then with just Σ_3 and Σ_8 , Focus Point can be achieved introducing a RG-invariant parameter.
 - Lighter stau is in (100-400) GeV range which can be a target at ILC.

GMSB with Adjoint Messenger multiplets (Σ_3 and Σ_8) is an attractive scenario