

ILC – Detector and Machine

E.Elsen

DESY PRC, Oct 1-2, 2008, Zeuthen

Strategy

- European Strategy remains unchanged
 - Full exploitation of the LHC
 - Preparation of ILC
 - R&D for future linear colliders
- DESY's efforts for a future lepton collider are fully embedded in this context

be prepared

- Home of the SRF ---> Special role for the ILC
- Vital element in "Physics at the Terascale"

Global Timelines for ILC

Overview of engagement for ILC

- Management activities for the ILC
 - One of three project managers from DESY (N Walker)
 - Support for European GDE director
 - and a few other exposed positions
- Address one of two critical issues identified
 - High gradient programme for SRF
 - *e-cloud effect in damping rings* (no further effort at DESY at this time)
 - some contributions to accelerator system (positron source)
- Prepare an ILC detector
 - R&D for detector technologies
 - some synergies with LHC
 - Advance a detector concept to maturity (ILD)

ILC-HiGrade

- ILC-HiGrade is the Preparatory Phase project of the European Commission to work towards the realization of the International Linear Collider based on superconducting RF technology.
- The project is one of 30+ projects on the ESFRI list considered technically mature for construction. The two HEP projects SLHC-PP and ILC-HiGrade entered via the C.E.R.N. Council strategy list
- In order to reach an early status of readiness for construction ILC-HiGrade addresses
 - a key technical component that affects the cost, i.e.
 SRF gradient with a goal of running the ILC at 31.5 MV/m (a 6% saving over the current state-of-the-art gradient)
 - siting of the ILC and the formation of governance and financial structures in Europe that enable the realization of the project. The European Commission recognizes that this is a process with global implications

Imbedded in Gobal Design Effort

- GDE has installed a Study Group for Governance
- Siting is a priority topic for ILC
 - deep vs shallow tunnel
 - single vs twin tunnel
- Cavity gradient is one of two critical research topics
 - global effort with activities in Asia, America and Europe
 - European effort based on XFEL engagement and ILC-HiGrade

Reference Design Report is the basis for the Technical Design

ILC Siting

- Current sample sites in
 - US (near FNAL)
 - EU (CERN)
 - Japan (several locations)

- Dubna offer a location that is particularly suited for shallow tunnel concepts
 - will be used as an example for exploration of cost benefits

ILC High Gradient Activity

- High gradient cavities @ 40 MV/m have been produced in prototypes
- XFEL will order ~800 cavities specified at ~23.5 MV/m
- ILC-HiGrade will add another ~30 cavities from the same industrial production process. They will receive special final treatment according to the findings from the XFEL batch System Delivered to KEK
 Example: detailed surface inspection

cavity cavity cylinder mirror camera

• Use of FLASH to establish IL@-like operation

• 3 nC/bunch, 500 bunches @ 1 MHz established

Booster Linac

(cryomodules to boost energy to 5 GeV)

Damping Ring

Beyond critical issues

- Positron source development
 - Baseline is an undulator source
 - technological optimization/ prototyping in collaboration with UK institutes
 - positron polarization
 - generation, measurement and transport
 - Polarimetry
 - at low and high energies
- Beam dynamics
 - Beam delivery and Machine detector interface
 - Advanced simulation tools available

Pre-accelerator

(125-400 MeV)

e⁻ Dump

γDump

~147 GeV e⁻

Collimator

(upgrade)

150 GeV e⁻

6-2007 8747A21 Helical

Undulator

(not to scale)

Target

OMD

Capture RF

(125 MeV)

Beyond ILC

- Several concepts for gradients beyond what is technologically established
 - Cavities ~0.1 GV/m
 - Lasers and dielectrics ~1 GV/m
 - Plasma ~10 GV/m
- DESY will follow the global developments and explore the options for a focussed engagement in the subsequent funding period
 - Seeking joint effort with Alliance "Physics at the Terascale"

ILC Detector R&D collaborations

- Vertex detector
 - qualification of MAPS and other Si-technologies, supportive infrastructure
- LC-TPC
 - TPC for ILC; fine-grained readout, low-mass tracking detector (goal 10%X₀)
- CALICE
 - HCAL large-scale prototype readout with SiPM

• FCAL

 high rate forward calorimetry with integrated compact electronics and optical readout (direct application also at LHC)

ILC Detector R&D collaborations

- R&D efforts fully embedded in the international effort to arrive on a conclusion for optimal detector design
 - Particle flow algorithm (PFA) can only be validated in a complete detector (not only calorimeter)
 - Hence R&D collaborations have to resort to detector concepts to fully assess the performance of their detector component
 - They also depend on comprehensive software support in order to simulate and analyze their detectors

• Longstanding effort at DESY

ILD detector concept

- ILC is a merger of the former LDC (aka TESLA) and the GLD design
- Intense collaboration and exchange between Japanese and European groups
- DESY centrally involved in management and coordination of ILD
- en route to preparing the conceptual design for submission to Research Director for validation by IDAG

Potential developments (additional funding)

• ILC machine

- prepare and extend the XFEL production capabilities at DESY and with industry for a smooth startup and continuation for ILC mass production
- ILC detector office
 - Coordinate tests of detector options at the system level
 - integrate European developments into an ILC detector
 - support for German universities

Summary of Programme

- Programme for preparation of a Linear Collider primarily targeted towards maintaining readiness for rapid realization of the ILC
 - the only option to respond quickly to the physics exploration needs for a TeV linear collider
 - addresses key issues of the accelerator
 - prepares one of the detector concepts (ILD)
- Consolidation an energetic detector development programme at DESY for ILC and sLHC at DESY
 - infrastructure
- Exploration of the options for future lepton colliders at very high energies