

Open Standards for Embedded Computing

An Introduction to the PICMG Standards Organization

- Do we need open standards?
- Who is PICMG?
- Major PICMG technologies
- Work involved in making a new standard
- Which standards are to come tomorrow?

Do we need open standards?

- 2 main questions:
 - "make" vs. "buy"
 - "prorietary" vs. "open"

- √ Supporters
- √ Time to market
- √ Costs

Proprietary Architectures

- Typically developed, built, and maintained by a single vendor – a complete solution
- Generally expensive and rarely the latest technology
- Only the largest companies have all of the requisite skills to be experts on all elements
- Upgrades usually slow to arrive the vendor "owns" you

Open Architectures

- Open standards generally developed by non-profit consortia with many members that have a wide range of skills
- Multiple vendors provide price and feature competition
- If customers don't like their vendor(s) they can go someplace else
- Leading edge technology and improvements

Do we need open standards?

- 2 main questions:
 - "make" vs. "buy"
 - "prorietary" vs. "open"

- √ Supporters
- √ Time to market
- ✓ Costs

✓ YES, we do!

- Do we need open standards?
- Who is PICMG?
- Major PICMG technologies
- Work involved in making a new standard
- Which standards are to come tomorrow?

PICMG®

- Formal name: PCI Industrial Computer Manufacturers Group
- Pronounced "Pick-M-G" or "Pick-Mig"
- Founded 1994
- Non-profit consortium
- Over 250 members companies
- 45 standards released to date, grouped in 9 families, representing more than \$10B in global revenue

PICMG®

- Hundreds of vendors building compliant, interoperable products
- Deep engineering expertise in member companies:
 - Electronic, mechanical, packaging, and thermal design
 - High speed signaling and simulation
 - Software and High Availability skills
- Rigorous Intellectual Property policies
- Long technology lifetimes (>20 years) with continuous improvement

- Do we need open standards?
- Who is PICMG?
- Major PICMG technologies
- Work involved in making a new standard
- Which standards are to come tomorrow?

CompactPCI® CompactPCI Serial®

- CompactPCI®:
 - Adoption 1995
 - first switched fabric backplane in 2000
- CompactPCI Serial®:
 - Adoption 2011
 - high speed serial fabrics (GbE, PCIe, USB, SATA)
- Popular and rugged 3U/6U Eurocard mechanics
- Used in a wide variety of industrial control telecommunications, transportation and automation applications

COM Express®

- Adoption 2004
- small single board computer "engines"
- Variety of sizes supported
- Very popular high performance Small Form Factor architectures
- Can be plugged into a customer-supplied baseboard containing application specific I/O

Advanced TCA®

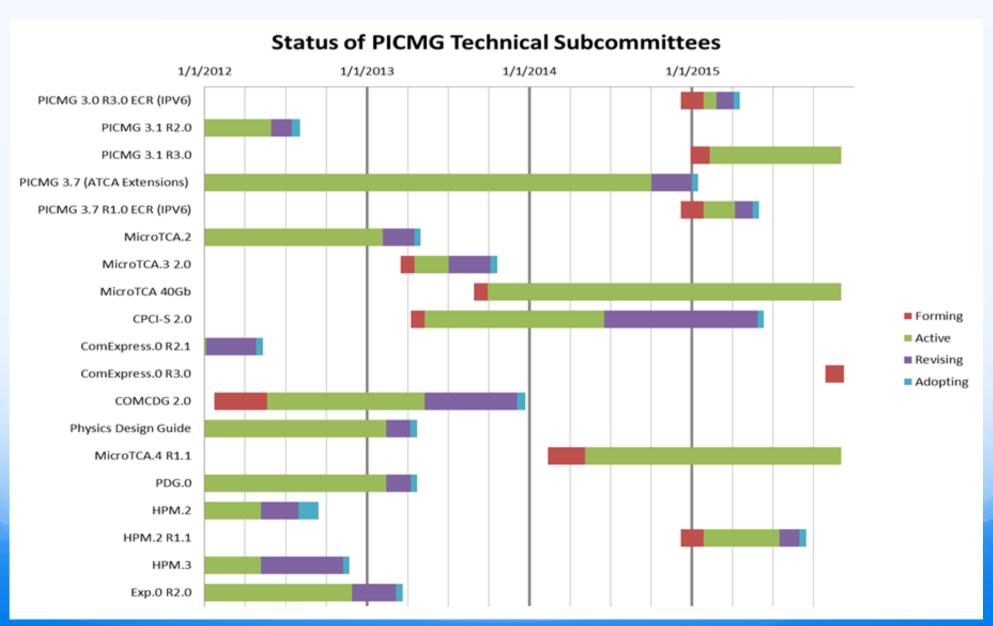
- Adoption 2003
- aka ATCA®: now the global standard for high end telecom equipment
- Modular, rugged, NEBS compliant
- Architected for High Availability system keeps running in the event of single item failures. ATCA is the only open architecture to offer this
- Global revenue greater than \$2B USD/year
- VITA adopting ATCA Platform Management architecture for VITA 46 (VPX) with PICMG's blessing.

Advanced TCA® SpinOffs

- Advanced Mezzanine Card (AdvancedMC®)
 - Adoption 2004
 - Allows customizing ATCA cards for application specific I/O, reducing spares inventories for telecom carriers
 - Fully managed, supporting High Availability

MicroTCA[®]

- Adoption 2006
- Utilizes AdvancedMC cards plugged directly into a backplane
- Supports High Availability designs
- multi-facted and rich ecosystemSmall-to-large migration path


- Do we need open standards?
- Who is PICMG?
- Major PICMG technologies
- Work involved in making a new standard
- Which standards are to come tomorrow?

Work involved in a new standard

Preliminary CfP	SoW —Approved SoW	_Draft for Member Review		Draft for Adoption Release	
Formation	Specification Development	Member Review Ballot 30 days	Revising	Adoption Ballot 15 days	
Setting Goals And Leadership	Generating and Documenting Requirements	Soliciting Feedback And Processing Change Requests		Formal Approval	

PICMG'

Work involved in a new standard

- Do we need open standards?
- Who is PICMG?
- Major PICMG technologies
- Work involved in making a new standard
- Which standards are to come tomorrow?

Evolution and Revolution

- PICMG has developed roadmaps for the future of key technologies:
 - AdvancedTCA: add 100G backplane bandwidth, improved cooling, higher power capability, SDN and NFV, improved applicability for data centers (PICMG 3.7)
 - MicroTCA: add 40G backplane bandwidth
 - GEN4™ a next generation platform with 10x system and module throughput, improved SWaP, reduced CAPEX & OPEX. Improved scalability and recognition of convergence of telecom central office and data center requirements.

Conclusion

- PICMG well established with significant track record of successful standards
- Extremely talented and diverse member base
- Strong Intellectual Property policies
- Low membership dues and not dominated by any single company
- Continuing evolution of key technologies

Thank you!