

Integrated Device Technology

RapidIO 50-100 Gbps Technologies for MicroTCA Systems

December 2015 Presenter: <u>ruben.aszkenasy@idt.com</u>

© Integrated Device Technology

What and Where is this?

RapidIO 50-100 Gbps Technologies for MicroTCA Systems

- RapidIO Ecosystem
- Protocol Attributes
- RapidIO 10xN Features
- Systems Architectures
- AMC ecosystem and solutions for Heterogeneous Computing
- Systems Solutions at CERN and Orange Telecom

IDT Company Overview

Founded	1980
Workforce	Approximately 1,500 employees
Headquarters	San Jose, California

#1 Serial Switching – 100% 4G Infrastructure with RapidIO
#1 Memory Interface – Industry Leader DDR4
#1 Silicon Timing Devices – Broadest Portfolio
800+ Issued and Pending Patents Worldwide

Mixed-signal application-specific solutions

• 20/40/50Gbps per port – 6.25/10/12.5 Gbps lane

- Embedded RapidIO NIC on processors, DSPs, FPGA and ASICs.
- Hardware termination at PHY layer: 3 layer protocol
- Lowest Latency Interconnect ~ 100 ns
- Inherently scales to large system with 1000's of nodes

- Over 14.5 million RapidIO switches shipped
- > 2xEthernet (10GbE)
 Over 85 million 10-20 Gbps
 ports shipped
- 100% 4G interconnect market share
- 60% 3G, 100% China
 3G market share

Live Data from Wireless to the Cloud

The Real-Time Usage Rising

Networks and Data Centers must THINK FAST

- Millions of users
- Billions of devices
- More data per user
- Unstructured Data
- Video/Text/Image

Social Media, Finance, Health, Video, Audio, Cloud Compute, Transportation, Military C3I

6

RapidIO Markets Today

- Lowest latency interconnect
- High scalability

Industry standard fabrics

- Energy efficiency
 - Reduced TCO

Over 400 production customers across markets

Industrial Automation

Defense and Aerospace

Real-time Image Analytics

() IDT.

Industrial, Military & Aerospace

- RapidIO Fabrics deliver key performance metrics such as:
 - best in class switch cut through latency of ~100ns
 - lossless data flow
 - small footprint and lowest overall power consumption
 - High reliability for mission critical markets
- RapidIO.org Community works closely with the PICMG for ATCA/MicroTCA/AMC standardization

RapidIO Fabrics deliver highly reliable, fault tolerant performance to demanding Mil/Aero applications

Supported by Large Eco-system

RapidIO 10xN in Wireless and C-RAN

3G → 4G → 5G

- Today 100% of the 4G OEMs use RapidIO for baseband interconnect
- 4G technologies are driving need for inter processor communication
- Wireless and Server worlds are converging
- IDT is developing S-RIO 10xN Switches, bridges and endpoint IP @ 50+ Gbps per port
- Peer to Peer Scalable Interconnect for Wireless, Cloud, Imaging, Military, Industrial and Medical
- Scales to 100 Gbps per port with SerDes Upgrade

• 10.3125 Gbaud per lane, 50 Gbps per port embedded interconnect

• 100 ns Latency with 5x effective bandwidth of 10 GigE for embedded systems

<300mW per 10 Gbps of data

RapidIO Specification Mapped to Devices

RapidIO for Fault Tolerant Systems

- Packets destined for the faulty endpoint must be discarded
 - Refer to Part 8 Error Management Extensions Section 1.2.4, table 1-1
 - Timeouts can also be used to discard packets
- Hardware must detect and rapidly notify the System Host of a failure
 - The hardware must begin discarding packets to prevent system congestion/failure

•The System Host must receive notification, then diagnose, isolate and allow replacement of the faulty hardware

Embedded Interconnect Needs

Interconnect Requirements	RapidIO	Details
Low Latency		switch silicon: ~100 nSec memory to memory : < 1 uSec
Scalability		support any topology, 1000's of nodes, true peer-to-peer
Integrated HW Termination		integrated into SoCs and guaranteed, in-order delivery without software overhead
Power Efficient		3 layers terminated in hardware, Integrated into SoC's
Fault Tolerant		supports hot swap and fault tolerance
Deterministic		guaranteed, in order delivery with deterministic flow control
Top Line Bandwidth		10-25 Gbps per lane

Why RapidIO 10xN in Embedded

Bandwidth and Per Port Economics						
System Requirement	Embedded 10G Ethernet	RapidIO Gen 2	RapidIO 10xN			
Switch per-port performance raw data rate	10 Gbps	20 Gbps	50 Gbps			
End to end packet termination	>10 ms	~1-2 us	~1-2 us*			
Messaging performance	Moderate	Excellent	Excellent			
Volume pricing \$ per 10Gbps	\$ 8	< \$4	< \$3			
Typical Power Per 10 Gbps	>1W	<0.4W	<0.3W			

- * The S-RIO latency numbers allow for a bridge (or external NIC). For applications using embedded NICs, we would see sub micro-second latencies.
- S-RIO 10xN = 50 Gbps native fabric interface, without the need for external NIC
- 40 Gbps native fabric interconnect with S-RIO 10xN, ~ 5x 10GbE actual throughput
- Best cut through latency 100 ns, 10 GigE cut through latency of multiple hundreds of ns
- Guaranteed delivery mechanisms

Clustering Fabric Needs

RapidIO Interconnect combines the best attributes of PCIe and Ethernet in a multi-processor fabric

Performance Needs Low Latency Interconnect

- Chip to Chip
- Board to Board across backplanes
- Chassis to Chassis
- Over Cable
- Top of Rack
- Heterogeneous Computing

Rack Scale Fabric For any to any compute

RapidIO Architectures for Heterogeneous Computing

- Heterogeneous support
- With and without native RapidIO
- With GPU accelerators
- Chip-to-Chip, Board-to-Board, Chassis-to-Chassis, Over Cables, Top of Rack

High Density Computing For Embedded Apps all supported in MicroTCA

latency scalability Low power

AMC Ecosystem

©2010 Integrated Device Technology, Inc.

Sample RapidIO 1.3 AMCs with 10 Gbps per port

RapidIO2 in xTCA

Ecosystem for RapidIO and MicroTCA/ATCA

- Baseband Cards with DSPs with IDT switches
- Switch Cards (MicroTCA Carrier Hub)
- Antenna Interface Come (CDC)
- PowerPC AMCs

Heterogeneous Computing (DSP/ FPGA/PPC...)

Heterogeneous Computing

Proven Interoperable hardware and Industry support (Phase 1)

- Leverage industry standard AMC form-factor
- Optimize computation based on the workload

Prodrive AMC TI ARM + DSP

- ARM + DSP Processing
- Superior performance/watt Computing

NAT AMC Freescale QorIQ P4080 + Xilinx V6

- FPGA + DSP Acceleration
- · High performance storage/compute

Concurrent AMC Intel CPU

- x86 Computation and Eco-system
- High Performance Analytics and Storage Solution

N.A.T. RapidIO 2 MicroTCA Carrier

Provides Switching for MicroTCA System with 12x20 Gbps S-RIO

- 12x4 RapidIO ports @ 20 Gbps
- Enables customers to develop entire signal processing systems with RapidIO in the backplane
- 2x IDT CPS-1848 S-RIO Switch
- Front Panel Connectivity for chassis to chassis system level expansion
- Backward compatible with numerous S-RIO 1.3 AMCs
- AMC.4 connector compliant

Heterogeneous Computing: GPU Compute Node

- Compute
 - 4 x Tegra K1 GPU + ARM32
- Fabric

DT

- RapidIO Switching
- 4x RapidIO Gen2 NIC
- Ethernet
- Performance
 - 1.28 Tflops/Compute (4 GPU)
 - 140 Gbps Switching Fabric
 - ~100nsec RapidIO switching latency

Project Caldey Island Mezzanine Block Diagram rev 01

Low Latency GPU Analytics Module http://www.gocct.com/sheets/AG/photograph/hires/aga1xm1d.j http://www.gocct.com/sheets/AG/aga1xm1d.htm

Commagility RapidIO Gen2 AMC

- Complete MAC-PHY Signal Processing Solution for wireless
 - Xilinx Virtex-6 FPGA (LX240T-2 FPGA standard build - up to LX550T-2 FPGA possible)
 - IDT CPS-1848 Serial RapidIO switch
 - SRIO V2.1 at up to 20Gbps per port with multiple x4 ports to backplane and front panel
 - Dual mini-SAS, to FPGA and SRIO - flexible, high-speed cabled connectivity
 - Three front panel SFP+ optical interfaces configurable as CPRI, OBSAI, GigE, S-RIO
 - Upcoming Expansion for DSP daughter card

RapidIO Interconnect at CERN

PRESS RELEASE

IDT Collaborates With CERN to Speed and Improve Data Analytics at Large Hadron Collider and Data Center

- Low latency interconnect fabric
- Heterogeneous computing
- Large scalable multi processor systems
- Desire to leverage multi core x86, ARM, GPU, FPGA, DSP with uniform fabric
- Desire programmable upgrades during operations before shut downs

Edge Social Data Analytics

- Analyze User Impressions on World Cup Final 2014 (Germany/Argentina)
 - HPAC Lab project to analyze World Cup 2014 twitter data using Hadoop and visualize using Tableau public on HPAC Platform

IDT RapidIO Product Portfolio and Roadmap

Summary of RapidIO 10xN in xTCA

RapidIO 10xN MCH with 50 Gbps per port, 100 Gbps per AMC Interconnect in development for 2016 Ideal for Embedded Mission Critical Systems

Low latency RapidIO provides a scalable low latency clustering fabric

x86, FPGA, DSP, PPC, ARM, GPU all supported in MicroTCA ecosystem

Development Tools

©2010 Integrated Device Technology, Inc.

IDT S-RIO System Simulation Tool

- Predict traffic throughput
- Useful for predicting end-to-end latencies for hi and lo priority packets
- Optimize link speeds and widths

Complex System Simulation

HW Debug Capabilities

- Event logs
- Packet capture
- BERT On die scope function simplifies testing
- PRBS generation and checking
- Performance & diagnostic counters

S-RIO 10xN Development Platforms

Development Hardware

Stand-alone platform that leverages widely recognized connectors throughout the industry

Development Software

- Register Access Tool
 - Accessible via I2C, JTAG and inband sRIO
 - Read and Write registers
 - Status commands.
 - Error log setup, and analysis
 - LUT programming and debug.
 - Packet generation and error injection control.
 - PRBS programming and usage
- On-die Scope Function
 - Integrated into Register Access Tool for easy register configuration and status reporting for easy design-in
 - Scope tool displays bit error curves

Used by OEM's and semiconductor suppliers for:

- Proof-of-concept system
- Interoperability testing
- Demonstration system
- Software Development
- ASIC/SOC/IP Development

Open High Performance Analytics and Computing Lab

High-Performance Computing and Analytics Lab

100 ns latency

() IDT.

- Rapid^IO
- Cluster scales to thousands of nodes Mission-critical reliable network
- Industry-wide collaboration

- Open Collaboration Lab around Heterogeneous Computing with low latency scalable RapidIO interconnect to accelerate end market usage
- Key focus areas:
 - Hyperscale Cloud Data Center-Based Analytics
 - High-Performance Computing
 - Wireless 4G advanced,
 - Wireless 5G and Mobile Edge Computing
 - Video Analytics
- Project by project contribution model
- Past, current and potential Projects
 - Twitter Analytics on FIFA World Cup Finals
 - Supercomputing at the Edge with GPU
 - CERN LHC target acquisition and data center analytics
 - Mobile Edge Computing for wireless networks
 - Edge Analytics for Financial Transactions and Fraud Detection
 - RapidIO ToR switching for Cloud RAN
 - Scalable low latency storage

Accelerate Adoption of OCP and RapidIO Solutions

DIDT

