
LINUX general purpose PCIe driver for
MTCA

4th MTCA Workshop for Industry and Research

Davit Kalantaryan

4th MTCA Workshop

DESY, 11.12.2015

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 2

Content

> Introduction

> Requirements for the driver

> Implemented functionalities

> Timing and memory usage

> Comparison between DMA with streaming buffer and DMA with

coherent mapped buffer for ADC boards

> Conclusion

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 3

Introduction (necessity of general driver)

MTCA is going to be the standard for some decades. One of the important and

time consuming task is the software development for MTCA. It is obvious that

user space software development is preferable in comparison with kernel driver

development, because of

• Debugging

• Possibility to use more high level programming languages, that improve

productivity and decrease possibility for errors

• Easy maintenance and adaptation in the case of LINUX kernel changes

Therefore it is worthwhile to engage couple of years in the development of kernel

space general purpose driver based on MTCA standards. Ultimately only user

space software will be required to adopt new MTCA devices. The design and the

development of the general driver started in 2013 with the objective of finally

creating a driver that is able to handle as many MTCA devices as possible. The

following rule is always kept: if a generalization of any functionality leads to

penalty in performance or increase in memory usage or too complicated code is

abandoned. In the case a device is not possible to be handled by this driver due

to device very specific functionality, driver stacking can be used. The driver can

be parent driver for specific device driver.

Hardware developer also can use the driver to make tests during hardware

development.

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 4

Introduction (when a driver is required)

Devices are controlled using their IO registers. Usually device behavior can be

changed by writing some value to the devoted register. If only read and write

operations are sufficient to control the device, no driver is needed. In this case

one can simply use `/dev/mem´ entry for mapping IO device memory and

registers to user process address space. In this way the whole task is

completed.

Undeniably, if there is a possibility to make a device handling software without

the kernel space driver development (avoiding a penalty in performance and

CPU usage), user space programming should be preferred.

Unfortunately, in some cases the sole user space software is not sufficient for

handling the device, and even worse, for each device requirements for kernel

driver can vary (as a consequence a great deal of development and independent

driver for each device are needed. Next slide represents functionalities when

kernel space driver is required).

MTCA is being effectively used in DESY. A driver that is able to handle a lot of

MTCA devices is being developed. The idea is that MTCA devices have to

satisfy some standards, and based on these hardware generalities (driven by

standard) a driver that is able to handle many AMC4 compliant boards can be

created.

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 5

Functionalities that force driver usage

> Atomic access to several registers (read/read,read/write,…)

> Error handling

> Hot plug handling

> Device interrupts handling

> Initiating DMA (if device is capable to make DMA)

So the statement is following: If there is a driver, that is able to handle

these issues in an effective way for many MTCA devices, then most of

(these) devices can be handled by this driver and adding new device to

MTCA will cost only user space software development.

> Currently first 3 points are implemented in general purpose driver.

> Already debug version of driver with common IRQ handling routine exists.

Some devices in Zeuthen use of the IRQ functionality of the driver.

> DMA: In design stage

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 6

Requirements to the driver

> Due to the generalization of any functionality no performance penalty

should occur.

> There should not be any considerable increase in memory usage due to

the general functionality. If there is a functionality that cannot be

implemented without performance lowering or memory usage increase,

it will not be added to the driver.

> The code should not be long and complicated. Otherwise no benefit will

be achieved because of the difficult maintenance.

> Driver must export all necessary interfaces for other top level drivers

(driver stacking). Then in the case of specific device, that is not possible

to handle with this driver, one can easily create driver for this specific

device on top of this driver with less effort.

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 7

Example of usage of atomic access to several registers

(read/read,write/write,read/write,…)

Prog. A) Setting time to 1 second
1. Set(0x104,1); - setting time base to s

2. Set(0x216,1); - setting time

0 1 …

0x104

Register for time base

0 – Milliseconds

1 – Seconds

Register for time value

Prog. B) Setting time to 900 milliseconds
1. Set(0x104,0); - setting time base to ms

2. Set(0x216,900);- setting time

Possible sequence of actions performed by two concurrent programs

1. B) Set(0x104,0); // In this case finally time will be 900s instead of being ~1s

2. A) Set(0x104,1);

3. A) Set(0x216,1); // this may lead to serious problems in system

4. B) Set(0x216,900);

Assume there is a timer device and setting time should be done by first setting time base and

then value. If these 2 set value operations are not done in atomic manner a following problem

can occur: after setting time base by program A, program B changes time base and then

again program A sets value with wrong time base

0x216

… …

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 8

Vectorised device access in atomic manner

As a solution to the problems described in previous slide, ioctl call was implemented to make several device

accesses at once. The types of these device accesses are

a) Read one or more registers

b) Write one or more registers

c) Set any amount of bits of any amount of registers

d) Swap any amount of bits of any amount of registers

Structure to make this ioctl call is following

typedef struct device_vector_rw

{

 u_int64_t number_of_rw; /* number of device accesses */

 pointer_type device_ioc_rw_ptr; /* pointer to the data for all device accesses */

} device_vector_rw;

In the first field (number_of_rw) number of atomic accesses to device provided. The second field

(device_ioc_rw_ptr) is pointer to the device access data of this type

typedef struct device_ioc_rw

{

 u_int16_t register_size_mode; /* RW_D08, RW_D16, RW_D32 , if<0, then default is used */

 u_int16_t rw_access_mode; /* (read,write,set-bits,swap-bits) */

 u_int32_t barx_rw; /* BARx (0, 1, 2, 3, 4, 5) */

 u_int32_t offset_rw; /* offset in address */

 u_int32_t count_rw; /* number of register to handle */

 pointer_type dataPtr; /* pointer to the buffer for writing to device or to store data from device */

 pointer_type maskPtr; /* pointer to the buffer for mask for bitwise operations */

}device_ioc_rw;

ioctl(fd,PCIEDEV_VECTOR_RW,aRWData);

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 9

Several IO operations with intermediate calculations

When several register accesses have to be atomic and they are dependent

on each other, it presents an even more difficult case.

In the case of several dependent IO operations each register access

depends on the result from the previous accesses. After each operation,

some calculations should be performed for preparing next IO operation.

Another example for timer device  if time base is ms then value is set to

1000 and set to 1 if the base is second.

Prog. A) Setting time to 1 second (WCTB)
1. timeBase = Get(0x104); - set time base

2. setValue = timeBase==0 ? 1000 : 1;

3. Set(0x216,setValue); - setting time

Prog. B) Setting time to 1 second (CTB)
1. Set(0x104,1); - setting time base to s

2. Set(0x216,1); - setting time

Possible sequence of actions performed by two concurrent programs

1. Initial time base = 0;

2. A) timeBase = Get(0x104); (timeBase=0) => 1000 will be set

3. B) Set(0x216,1000);

4. B) Set(0x104,1);

5. A) (timeBase=0) => 1000 will be set // Intermediate calculation

6. A) Set(0x216,1000); // In this case final time will be 1000s instead of being 1s

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 10

Many operations in sequence with intermediate calculations

1. ioctl(fd,PCIEDEV_LOCK_DEVICE);

2. read(), some calculations, write() again

some calc. set-bits, ….

3. ioctl(fd,PCIEDEV_UNLOCK_DEVICE);

For implementing sequential accesses with intermediate calculations, two ioctl calls are

implemented for both locking and unlocking device. Between locking and unlocking the

program can make any amount of system calls to driver for accessing device. Driver checks if

the TID of thread corresponds to the TID of locker thread then all operations take place

without locking. Meanwhile, all the other programs wait. This locking has configurable

timeout. Whenever this timeout is reached and lock is not released by the program, the

kernel driver will release the semaphore lock for this program and send interrupt

signal.

Whenever it is possible vectorised device accesses should be

preferred to the scheme mentioned above. For this scheme the

intermediate calculations are done in user space and several

context switches between kernel space and user space take place

which can slow down the performance.

This approach is a little bit similar to flock standard system call http://linux.die.net/man/2/flock

and may be in the future instead of using ioctl for locking device this system call will be used.

http://linux.die.net/man/2/flock
http://linux.die.net/man/2/flock
http://linux.die.net/man/2/flock

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 11

Bitwise operations

For bitwise operations the driver provides 2 system calls

> ioctl(fd,PCIEDEV_SET_BITS,data): For setting any amount of bits from

any amount of registers

> ioctl(fd,PCIEDEV_SWAP_BITS,data): For swapping any amount of bits

from any amount of registers.

Data to be provided with these ioctl calls should be the pointer to the

following structure

typedef struct device_ioc_rw

{

 u_int16_t register_size_mode; /* RW_D08, RW_D16, RW_D32 */

 u_int16_t rw_access_mode; /* (read,write,set-bits,swap-bits) */

 u_int32_t barx_rw; /* BARx (0, 1, 2, 3, 4, 5) */

 u_int32_t offset_rw; /* offset in address */

 u_int32_t count_rw; /* number of register to handle */

 pointer_type dataPtr; /* pointer to the buffer for writing to device or to store data from device */

 pointer_type maskPtr; /* pointer to the buffer for mask for bitwise operations */

}device_ioc_rw;

For these ioctl calls field rw_acces_mode is ignored, because mode is set by kernel driver to set-bits or

swap-bits correspondingly. If register size is negative, then driver will use default register size for

corresponding device. For swap-bits operations dataPtr field is not used: can have any value

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 12

read/write, pread/pwrite

During read, write, pread or pwrite system calls the kernel space driver should know the pci bar (0-5)

and the offset. In the case of read/write system calls user space application provides this information in

the structure presented in the next slide. In the case of pread/pwrite this information is provided in the

fourth argument (offset) of these system calls. C syntaxes for the functions implementing these system

calls are following

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

Register size is also provided in the offset field, but register size is known by the driver. So if negative

register size is provided, then correct register size will be selected by the driver.

So the bits for the bar, the offset and the register size mode are the following

Bits [0-55] keep offset ???

Bits [56-59] keep register size ??????

Bits [60-63] keep mode ???

0 63 62 61 60 59 58 57 56

Bar->[0-5] Reg. size mode (RW_D08,RW_D16,RW_D32)

55 ……………………..

Offset

Instead of using these number better to use following macroses

PRW_REG_SIZE_MASK, PRW_BAR_MASK,

PRW_OFFSET_MASK, PRW_REG_SIZE_SHIFT,

PRW_BAR_SHIFT

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 13

Structure for read/write system calls

In the case of read/write system calls all necessary information is provided by the structure below.

typedef struct device_rw

{

 u_int32_t offset_rw; /* offset in address */

 u_int32_t data_rw; /* data to set or return data in the case of 1 register access */

 union

 {

 u_int32_t mode_rw; /* RW_D08, RW_D16, RW_D32. if<0, then default */

 u_int32_t register_size; /* RW_D08, RW_D16, RW_D32. if<0, then default */

 };

 u_int32_t barx_rw; /* BARx (0, 1, 2, 3, 4, 5) */

 union

 {

 struct

 {

 u_int32_t size_rw; // !!! transfer size should not be providefd by this field.

 // This field is there for backward compatibility.

 //

 // Transfer size should be provided with read/write 3-rd

 // argument (count)

 // read(int fd, void *buf, size_t count);

 // ssize_t write(int fd, const void *buf, size_t count);

 u_int32_t rsrvd_rw; // Not used

 };

 pointer_type dataPtr; // pointer to the buffer for writing to device or to store data from device

 // when number of registers more than one

 };

}device_rw;

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 14

Interrupt handling

For handling interrupt from any device, following steps

should be confirmed

> The first step is to understand if interrupt comes from our device

(IRQ_HANDLED) or from another device (IRQ_NONE) that is sharing

same interrupt line (because nowedays interrupt lines are mainly

shared)

> Read all necessary information, for this interrupt

> Inform user space applications about interrupt

> Acknowledge device

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 15

Handling device interrupts

All these steps are implemented in such a way, that for most devices, the

implementation works.

1. One register should be provided to the driver, that shows if device has made

interrupt or not.

2. For reading interrupt information and acknowledging device some registers

and corresponding operations types (read/write/bitwise) with corresponding

values (in the case of write) are provided

3. Two methods are implemented to inform the user space application about a

device interrupt: a) sending a signal to all interested user space applications

(from deferred bottom half interrupt handler), b) waking up all interested

applications

struct device_irq_handling aIrqHandleInfo;

…. //Filling info

::ioctl(fd, GEN_REQUEST_IRQ_FOR_DEV,&aIrqHandleInfo);

Following steps should be done

1. first is to understand if interrupt comes from our device or from another device, that is sharing same interrupt line (because now days

interrupt lines are mainly shared)

2. Read all necessary information, for this interrupt

2. Acknowledge device

3. Inform user space applications about interrupt

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 16

Timing

Performance tests for the following generalized functionalities have been done

1. Register accesses (read/write/ioc-rw)

2. IRQ handling

Case of a driver

per device

> read(100regs)-> ~240 ms

> write(100regs)-> ~14 ms

> Irq_handling -> ~700 ns

Case of a driver

for all device

> read(100regs)-> ~240 ms

> write(100regs)-> ~14 ms

> Irq_handling -> ~800 ns

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 17

Memory usage

Case of a driver

per device

> llrfadc.ko -> ~30 kB

> llrfdamc.ko -> ~30 kB

> llrfutc.ko -> ~30 kB

> sis8300.ko -> ~38 kB

> x1timer.ko -> ~49 kB

Sum.: 177 kB

Case of a driver

for all device

> mtcagen.ko -> ~100 kB

Sum.: 100 kB

Another contribution to the memory usage comes from dynamically allocated memory by a

driver. Dynamic allocation of memory by the driver is minimized and it is really neglectable.

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 18

Data and notification flows for coherent mapped buffer

case

Timer

Timer driver

ADC board

ADC driver

ADC DOOCS server

Trigger

In
te

rr
u

p
t

D
M

A
 i

n
it

 D
M

A

Device memory

Shared memory between kernel and user

In
te

rru
p

t

Informing ADC drv

Proc. 2 Proc. 3

wake_up (&(dev->waitDMA));

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 19

Error prone cases for streaming buffer usage

Timer

Timer driver

ADC board

ADC driver

ADC DOOCS server

Trigger

In
te

rr
u

p
t

S
IG

U
S

R
1

D
M

A
 i

n
it

C
o
p
y
_
to

_
u
s
e
r

Device memory

Kernel memory1

In
te

rru
p

t

Creation memories

User program2 User prog.2 memory

K. Memory2

D
M

A
 i

n
it

2

wake_up (&(dev->waitDMA));

DOOCS serv. memory

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 20

Comparison of steps for streaming and coherent mapped

buffer cases
Black actions are not done by CPU.

Yellows: done by CPU

Red: done by CPU and CPU usage is high

(context switches and huge data copy)

a) Timer module triggers the ADC board to

start sampling

b) After some configurable timeout timer

module generates interrupt

c) Kernel space timer driver sends SIGUSR1

signal to the DOOCS server responsible for

ADCs

d) DOOCS server makes ioctl call to ADC

kernel driver for data and waits

e) ADC driver requests DMAable memory

from the system

(get_free_pages(GFP_DMA,…))

f) ADC driver maps requested buffer for DMA

(disables Read cache)

g) ADC driver initiates device for making DMA

the sampled data and waits.

h) After DMA is done ADC board device

interrupts the CPU

i) ADC driver copies data from kernel

buffer to user buffer (copy_to_user)!!!

j) Finally ADC driver unmaps the buffer and

returns it to system

Black actions are not done by CPU.

Yellows: done by CPU

Red: done by CPU and CPU usage is high

(context switches and huge data copy)

a) Timer module triggers the ADC board to

start sampling

b) After some configurable timeout the timer

module generates interrupt

c) Timer driver informs ADC driver, that

sampling is done

d) ADC driver prepares DMA to the already

created system memory. This memory is

shared with user space applications

e) After DMA is done device interrupts the

CPU

f) Finally ADC driver wakes up all user space

applications and they can read data from

shared memory

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 21

Comparison of the DMA with different memory allocation

scheme

DMA with streaming

mapped buffer usage.

Advantages

• Low memory usage

• No permanent mapping

Disadvantages

• Several data user problem

• High CPU usage for data

pushing from kernel buffer to

user space buffer

• Strong dependence of CPU

usage and performance on

number of user space

applications which request

data

DMA with coherent

mapped buffer usage.

Advantages

• Low CPU usage and high

performance

• Multiple users easy to

implement

Disadvantages

• Permanent memory

allocation for DMA

• Permanent mapping of this

memory

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 22

Summary

> It is beneficial to have good MTCA general purpose driver

> Most functionalities are doable because of MTCA standards

> A lot of functionalities have already been implemented

> The driver is already being used for some devices

> A lot of drivers have been using some common functionalities from this

driver (using driver stacking)

Davit Kalantaryan | MTCA drivers | 11.12.2014 | Page 23

Outlook

The codes and current ready documentation are public and one can find

them in DESY SVN public repository

https://svnsrv.desy.de/websvn/wsvn/General.ers/sandbox/drivers/general_d

river

Any remarks are welcome. We are open for collaboration. If you are

interested, you are welcomed to join the project.

If you have any questions, please contact

Davit Kalantaryan: davit.kalantaryan@desy.de

Ludwig Petrosyan: ludwig.petrosyan@desy.de

Thank you for your attention!

https://svnsrv.desy.de/websvn/wsvn/General.ers/sandbox/drivers/general_driver
https://svnsrv.desy.de/websvn/wsvn/General.ers/sandbox/drivers/general_driver
https://svnsrv.desy.de/websvn/wsvn/General.ers/sandbox/drivers/general_driver
https://svnsrv.desy.de/websvn/wsvn/General.ers/sandbox/drivers/general_driver
mailto:davit.kalantaryan@desy.de
mailto:ludwig.petrosyan@desy.de

