Status and Experience with MicroTCA.4 LLRF systems at DESY.

Christian Schmidt On behalf of the LLRF team 4th MicroTCA.4 Workshop 2015/12/09

DESY LLRF installations overview

Relativistic Electron Gun for Atomic Exploration

Courtesy M. Hoffmann

Charge densities in

- Time resolved electron diffraction experiments (MPI) and test facility for laser driven plasmawakefield acceleration (LAOLA)
- Generation of sub-10 fs electron bunches
 - Timing stability: <10 fs at the target
 - Very low charge: 150..300 fC
- > RF parameter of the REGAE accelerator:
 - NRF gun (1.5-cell) and buncher cavity (4-cell)
 - 2.998 GHz S-band structures
 - 6 µs pulse length and up to 50 Hz repetition rate (up to now only 12.5 Hz)
 - Driven by one klystron, with motorized waveguide phase shifter

Propagation dimension in

LLRF system at REGAE

Courtesy M. Hoffmann

Christian Schmidt | 4th MicroTCA Workshop for Industry and Research | 2015/12/09 | Page 4

Free Electron LASer Hamburg

Flash | and FLASH II location site view

Regular FLASH operation

- > System for all SC modules in operation since >2years
 - Startup issues mainly due to software migration
 - Hardware mostly prototype versions (no major issues found)
 - Partly installed inside the accelerator tunnel
- RF-Gun in regular operation since Jan 2015
- Currently concentrating on stepwise upgrades
 - Software/Firmware + specific HW components

System fulfills expectations regarding quality and reliability.

Gained a huge amount of experience for the XFEL commissioning and operation!

MicroTCA.4 LLRF System – signal flow

LLRF@FLASH counted downtime in categories (2015)

- Infrastructure (Timing, power, cooling water, crate)
- Server (crashes, malfunction, restarts)
- Automation (diverging routines, not working functions,...)
- Firmware (malfunctions, required reboots, crashing)
- Operation (misusage, exceeding tresholds, ...)
- Performance (no machine operation, because of not working regulation)

- Tunnel installation requires access (machine recovery counted)
 - Exchanging parts, hardware failures
- RF-Gun system was installed in this year
- ACC45 tuning time for variable gradients

Examples of most recent hardware failures

Broken Zone3 connection

- VM ACC39 exchange for upgrade
- FLASH installation space very limited

Failures of SSD's / Raid array

- Mainly visible on the RF GUN
- Often not the SSD's are broken but the RAID (sw) was loosing a disk
- Installed new special single cell type SSDs
- Installation of radiation monitors to study what is the correlation
- In the past we have seen:
 - Broken cables (optical and copper)
 - Power cuts of the whole rack system
- > We have not seen:
 - Individual modules dying or degrading in performance or availability

Picture: uTC1.3 broken Zone3 connector due to missing mechanical rails in prototype stage.

Currently installed LLRF MicroTCA.4 hardware at FLASH

Hardware	RF GUN	ACC1	ACC39	ACC23	ACC45	ACC67	Test-stand
MTCA Crate	Schroff 2U	Schroff 12S LLRF AMC BP	Schroff 12S LLRF AMC BP	Schroff12S LLRF AMC BP	ELMA 12S AMC BP, LLRF RTM BP Prep	ELMA 12S AMC BP LLRF RTM BP Prep	ELMA 12S AMC BP,RTM backplane compatible
МСН	NAT MCH-PHYS	NAT MCH- PHYS	NAT MCH- PHYS	NAT MCH- PHYS	NAT MCH- PHYS	NAT MCH- PHYS	NAT MCH- PHYS
Timer	X2	X2	X2	X2	X2	X2	X2
Power supply	1x Vadatech PEM	1x Wiener PS 1KW	1x Wiener PS 1kW	1x Wiener PS 1kW	Vadatech PEM	Vadatech PEM	Vadatech PEM
Controller	Struck SIS8300LS	Vadatech TCK7	uTC	Vadatech TCK7	uTC	uTC	Vadatech TCK7 + <mark>uTC</mark>
VM	Struck DWCVM rev 1.1	1xVM 2.3LF	VM 1.2HF	VM 2.2LF	VM.1.2	VM 1.2	VM 2.2 + 1.2
Digitizer (STRUCK)	SIS8300LS+KLM	2xSIS8300LS 1xSIS8300LS2	SIS8300LS	SIS8300LS	SIS8300LS	SIS8300LS SIS8300LS2	SIS8300LS
DWC	1x DWCVM rev 1.1	3x Vers 2.2	3x Partly broken (re-soldered)	6x Vers 2.2	6x Vers 2.2	6x Vers 2.2	6x Vers 2.2

> FLASH → 56 SRF 1.3GHz / 4 SRF 3.9GHz/ 1 NRF gun

 \rightarrow final \rightarrow exchange \rightarrow upgrade

> Upgrade goal: consistent setup for FLASH and XFEL => maintenance

Accelerator Module Test Facility

Picture with courtesy of Jacek Swierblewski

(3 x RF stations 1.3GHz + 1 x 3.9GHz)

> AMTF (Accelerator Module Test Facility)

- Development of automatic test and qualification of modules
- System parameter characterization and database storage
- Automated test routines essential => 7 days/module
- > All modules have to be tested prior tunnel installation!
- Retrieved characterization data is being used in XFEL system setup
 - Tuner, fundamental modes, piezo, maximum gradients

Courtesy: M. Omet

CryoModule Test Bench

Test facility with cryomodule installation (left), amplifier IOT (mid) and MicroTCA test setup (right)

- Same LLRF system as used for AMTF/FLASH
- R&D basic principles for continuous wave and long pulse operation
 - Challenging: microphonic suppression
 - No pulse to pulse adaptations
 - Higher QI > lower bandwidth
- Coupling of frequency and RF control much stronger
 - New control schemes / strategies required

> Band-pass filter

European Xray-Free Electron Laser

E-XFEL 808 SRF 1.3GHz / 8 SRF 3.9GHz / 1 NRF gun

European XFEL (808 SRF 1.3GHz / 8 SRF 3.9GHz / 1 NRF gun)

- Currently injector commissioning, in parallel installation and pre-comissioning of the main linac components
- Complete in-tunnel installation for all LLRF components (except injector and MO)

LLRF system for XFEL

LLRF: DESY in-kind

- 26 RF stations (808 cavities, 101 cryomodules)
- MicroTCA.4 LLRF system, master / slave
- Vector sum (32 cavities) RF control

Pulse length 1.4msec (750 + 650 usec)

 $Q_1 = 4.6e6$ (½ bw = 140 Hz)

- 2 piezo per cavities (1kHz tuning)
- Motorized cavity tuners

RF parameters:

10 Hz rep. rate

 $\Delta A/A = 0.01\%$

Motorized Q_L, one-time fixed power ratios

 $\Delta \Phi = 0.01 \text{ deg.}$

MicroTCA.4

Courtesy: J. Branlard

Injector setup and comissioning

Courtesy: J. Branlard

Summary

- Several facilities in DESY which require LLRF support
 - Moved from prototype stage to mass production
 - Commissioning and maintenance work will increase dramatically in 2016
- FLASH and REGAE are running user facilities
 - Have a permanent monitor of system behavior and fault
 - Amount of lessons learned and bug fixes here are extremely important
- CMTB as test facility brings us to the next R&D project directions
 - New setups, cards can be tested here in a real system environment
- > AMTF and XFEL
 - Permanent module test and system characterization
 - XFEL injector commissioning starts now => beam until the end of this year
 - Next year commissioning of the main linac (~ 50 MicroTCA crates fully equipped !)

Thanks for your attention

