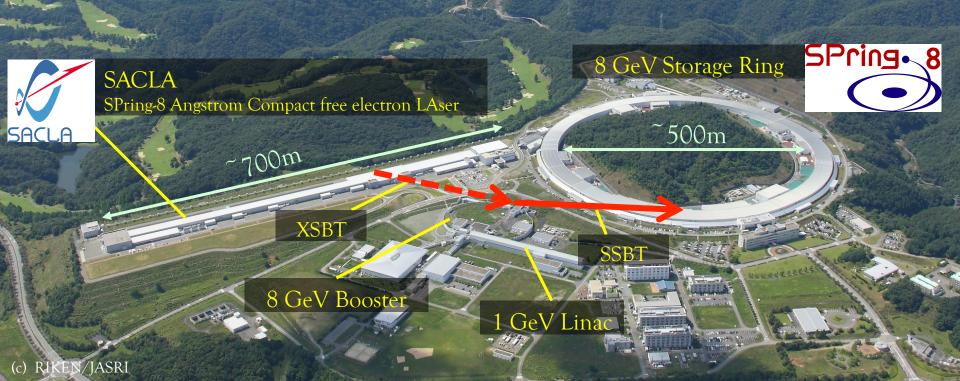
MicroTCA Image Processing System at SPring-8

Takemasa MASUDA, Akio KIYOMICHI JASRI/SPring-8


09/12/2015

Agenda

- O Overview of SPring-8/SACLA
- Motivation
- System Development
- Applications
 - 2D synchrotron radiation interferometer
 - OTR monitor at the injection point of the storage ring
 - Beam profile monitors at the 1 GeV linac
- Future plan
 - MTCA.4-based image processing system
- Summary

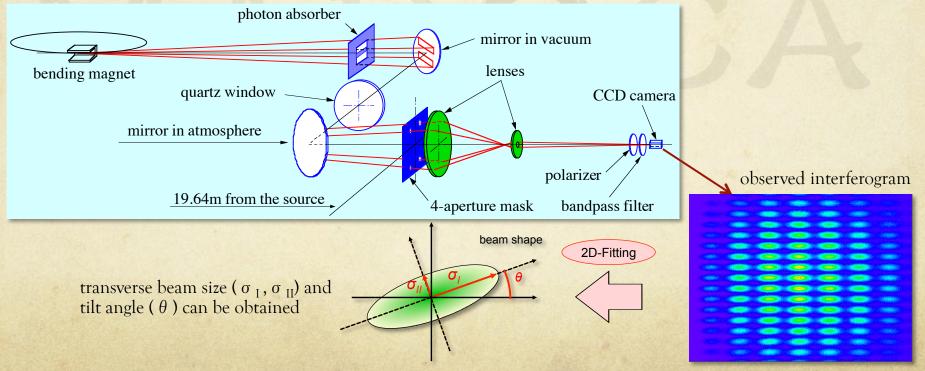
Overview of SPring-8/SACLA

- SPring-8 is a 3rd generation light source facility.
 - Largest synchrotron radiation facility for 18 years
- SACLA is an X-ray Free Electron Laser facility. [operated since 2011]
 - High-peak brilliance, spatial coherent, ultrafast X-ray pulse
 - It will inject ultra-short-pulse electron beam to the SPring-8 storage ring.

Evaluation of MTCA platform

- as the next-generation FE controller as the successor of VME
- Started at 2011

• Final target : MTCA.4


- Considering practical usage for the accelerator controls.
 Card size, RTM, trigger/clock signal distribution, ...
- MTCA.4 products were expensive at the point of 2011.
- Very limited choices of MTCA.4 AMCs
- \rightarrow Decided to start our evaluation by using MTCA.

Strategy of our development

- We have built an MTCA-based image processing system with Camera Link I/F for beam diagnostics of the SPring-8 accelerators.
 - 1st target : Replacement of a PC-based old system for the 2D Synchrotron Radiation Interferometer at the storage ring.

Strategy of our development

- We have built an MTCA-based image processing system with Camera Link I/F for beam diagnostics of the SPring-8 accelerators.
 - 1st target : Replacement of a PC-based old system for the 2D Synchrotron Radiation Interferometer at the storage ring.

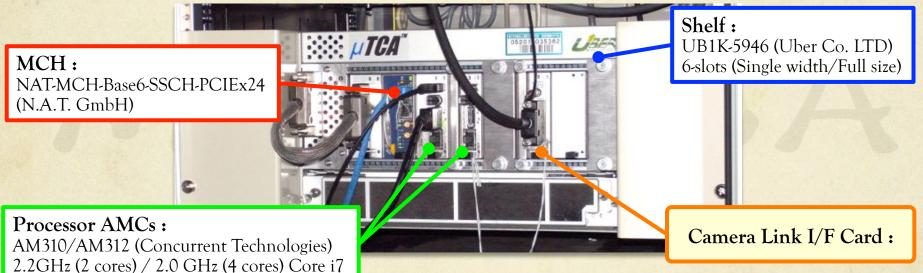
09/12/2015

Strategy of our development

- We have built an MTCA-based image processing system with Camera Link I/F for beam diagnostics of the SPring-8 accelerators.
 - 1st target : Replacement of a PC-based old system for the 2D Synchrotron Radiation Interferometer at the storage ring.
- We have used COTS products to minimize development costs & time.
 - We have newly developed FPGA IP cores compliant with AXI4 open bus to maximize reusability.
 - AXI4 : <u>A</u>dvanced e<u>X</u>tensible <u>I</u>nterface <u>4</u>

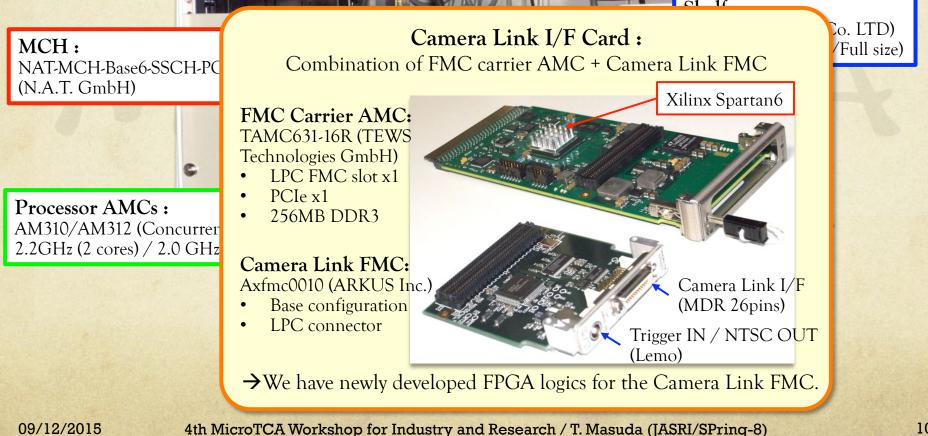
Hardware components

• We have utilized COTS products for the hardware components


Image processing system for 2D SR interferometer

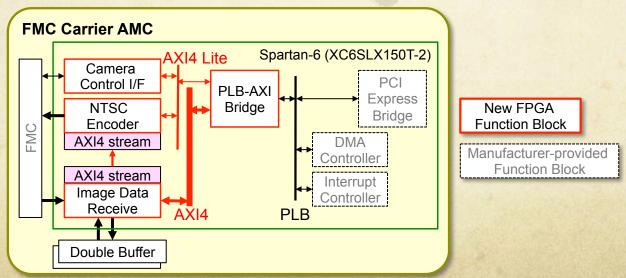
Hardware components

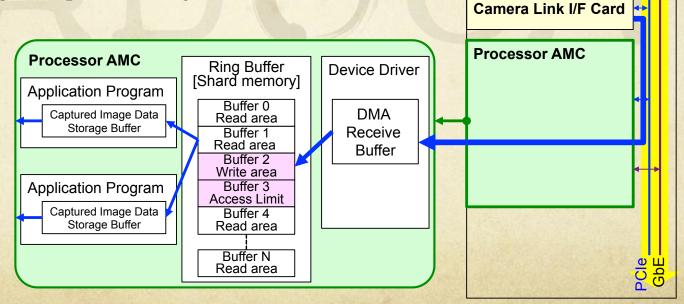
• We have utilized COTS products for the hardware components


Image processing system for 2D SR interferometer

Hardware components 0

We have utilized COTS products for the hardware components 0


Image processing system for 2D SR interferometer


Camera Link IP core

- Development policies:
 - To maximize reusability for next development.
 - e.g. We are starting to port these IP cores to Xilinx Zynq.
 - To maximize expandability of function blocks.
 - e.g. planning to add new functions of image compression, pre-processing, etc.

 \rightarrow Employ AXI4 open bus for interconnection between function blocks.

- Linux device driver and API library
 - Based on the manufacture-provided device driver.
 - Following functions were newly developed;
 - DMA transfer via PCIe Gen1 x1.
 - Ring buffer on shard memory for enabling parallel processing of captured images.

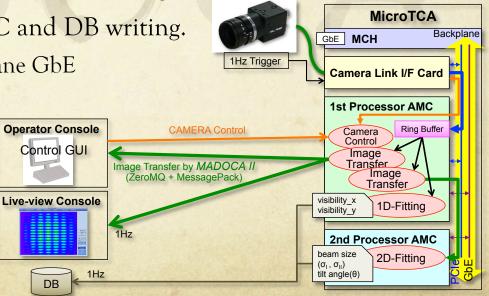
09/12/2015

MicroTCA

GbE MCH

Backplane

MicroTCA Image Processing System – Applications


2D SR interferometer 0

1st target of the MTCA image processing system with Camera Link I/F

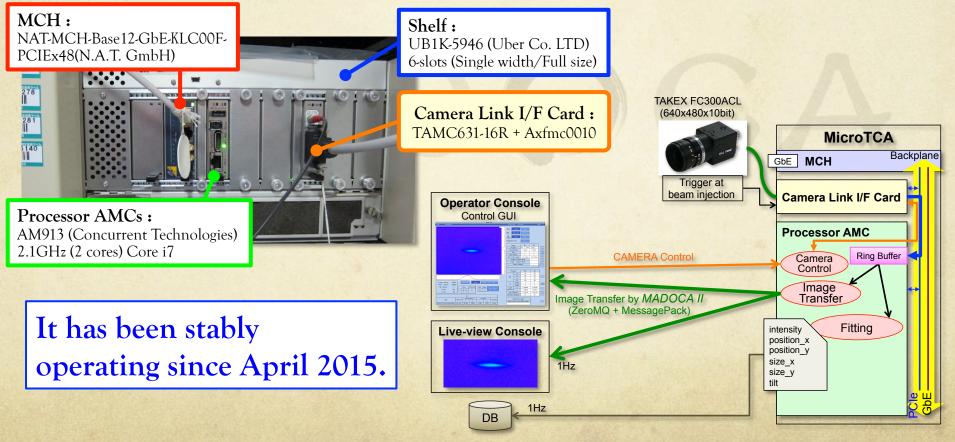
- This system achieves 0
 - Camera control by GUI on operator console. 0
 - 1Hz live view on operator console. 0
 - 1Hz 1D-fitting on 1st PrPMC and DB writing. 0
 - 1Hz 2D-fitting on 2nd PrPMC and DB writing. 0
 - Image data is sent via backplane GbE 0 from 1st PrPMC.
- Use MADOCA II framework 0 to build the software.

It has been 24x7 operating since October 2013.

TAKEX FC300ACL

(640x480x10bit)

09/12/2015


4th MicroTCA Workshop for Industry and Research / T. Masuda (JASRI/SPring-8)

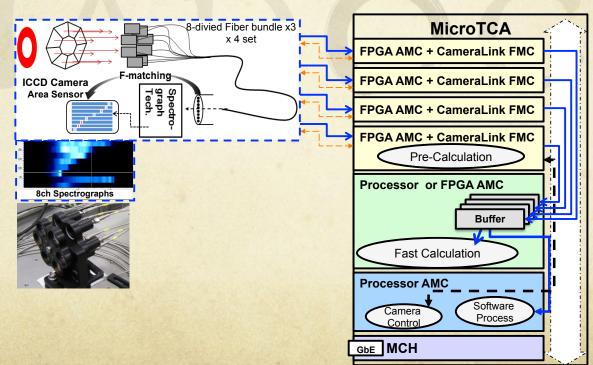
DB

MicroTCA Image Processing System – Applications

• OTR monitor at the injection point of the SR

• We have replaced PC-based old system with the MTCA image processing system.

09/12/2015


MicroTCA Image Processing System – Applications

- Beam profile monitors at the 1 GeV linac
 - Plan to replace analogue cameras for 49 beam profile monitors with Camera Link CCD cameras and the MTCA image processing system.
 - This project has just started.

H3 Mod	Camera x7	Selector		Ext = Camera Link Extender
M4 Mod	Camera x7	Selector		Selector = 8ch Camera Link Selector
M14 Mod	Camera x7	Selector		Ext Ext
LSBT	Camera x7	Selector		Ext 8ch Ext Camera
LSBT	Camera x7	Selector Ext		Ext Ext Ext Ext
L3BT	Camera x7	Selector Ext		MicroTCA
L4BT				Image Processing system
Camera – Ext				TEN' LANS
Camera Ext				
Camera Ext Ext 8ch				
Camera Ext Ext Link				
Camera Ext Selector				
Camera	Ext			

MicroTCA Image Processing System – Future Plan

- Developing MTCA.4-based image processing system
 - for 3D Bunch Charge Distribution Monitor that will be installed into beam-transport line from SACLA to SPring-8 (XSBT).
 - We will reconstruct 3D bunch charge distribution of the injected beam with 60Hz repetition by real-time processing of 4 ~6 sets of image data.

09/12/2015

MicroTCA Image Processing System – Future Plan

- MTCA.4 FMC carrier with Xilinx Zynq + Camera Link FMC
 - will provide more powerful and flexible pre-process capability by using Zynq (FPGA + ARM core).
 - Trigger signal distribution via backplane is available.

Summary

- We have evaluated MTCA platform as the next-generation FE controller as the successor of VME since 2011.
- MTCA image processing system with Camera Link I/F has been developed successfully.
 - This system has been applied to some beam diagnostic systems for the SPring-8 accelerators.
- We are developing MTCA.4-based image processing system for more powerful and flexible solution.

Summary

- We have evaluated MTCA platform as the next-generation FE controller as the successor of VME since 2011.
- MTCA image processing system with Camera Link I/F has been developed successfully.
 - This system has been applied to some beam diagnostic systems for the SPring-8 accelerators.
- We are developing MTCA.4-based image processing system for more powerful and flexible solution.

• Evaluation and design of MTCA.4-based LLRF and BPM systems for the SPring-8 upgrade plan (SPring-8-II) has been started.