Image Acquisition and Processing with MicroTCA.4

Dariusz Makowski Aleksander Mielczarek Piotr Perek

MicroTCA.4 for Industry and Research

Agenda

- Image Acquisition System
- Examples of Image Acquisition Systems
- Image Acquisition build with MTCA.4
- Image Acquisition and Processing
- Conclusions

Image Acquisition System

Video Camera

Frame Grabber

Data Acquisition and Processing

Challenges:

- High reliability, industrial form-factor
- Streaming and processing from multiple cameras

Synchronization, timestamping

Examples of Image Acquisition System

Image Diagnostics:

- ITER plasma diagnostics
- DESY FLASH/XFEL photoinjector pulse diagnostics
- DESY REGAE Center for Free-Electron Laser Science accelerator R&D

Source: https://www.mbi-berlin.de/

MicroTCA.4 for Industry and Research

ITER Project

Challenges in design of imaging systems for plasma diagnostics:

- Plasma diagnostics monitor plasma temperature, density, radiative properties, first-wall resilience
- 200 cameras:
 - 1-8 Mpx @ 50-50000 FPS
- Throughput can easily exceed 8 Gb/s per camera
- Scalability and high reliability
- 50 ns synchronization accuracy

ITER Diagnostic Port Plugs

MicroTCA.4 for Industry and Research

Image Acquisition and Processing with MTCA.4

Micro Telecommunication Computing Architecture:

- High RAMI (Reliability, Availability, Maintainability and Inspectability)
- Extensions for precision timing and synchronization
- Intelligent Platform Management
- Good price to performance ratio

6

Image Acquisition and Processing with MTCA.4

M for Inc

MicroTCA.4 for Industry and Research

Image Acquisition – External CPU

MicroTCA.4 for Industry and Research

MTCA.4-based Image Acquisition System

MicroTCA.4 for Industry and Research

Various Cameras and Interface Standards

Various interfaces for cameras:

- Camera Link
- Camera Link-HS
- CoaXPress
- GigaVision
- IEEE1394b/Fire Wire

Mikrotron MC3010/3011

PCO Edge 5.5

Andor Neo 5.5

MicroTCA.4 for Industry and Research

MFG4 - Frame Grabber Card for MTCA.4

- Cost-effective solution for high-performance image acquisition systems
- Designed as FMC carrier module (HPC and LPC) with FMC extension modules:
 - Camera Link (Base, Full, Ext-Full)
 - CoaXPress
 - Universal IO module
 - Firmware support for selected protocols
- Provides all resources for data acquisition and control systems (FPGA processing power, SDRAM, clocks distribution, trigger and interlock signals)
- Based on Xilinx Artix 7 (XC7A200T) FPGA
- RTM Zone 3 connector (D1.2 Digital Class)

MicroTCA.4 for Industry and Research

MPCIE-16 - PCIe Link for MTCA.4

- Allows to overcome the limitations of MTCA.4 PCIe connectivity
- More processing power using external CPU
- Possibility to use powerful GPU
- Supports PCIe x16, gen. 3 via copper cable
- Data throughput up to 128 Gbps
- Cost effective solution for MTCA.4
 System
- No additional drivers or software needed

MicroTCA.4 for Industry and Research

Image Acquisition System - Firmware

 Three paths for image, camera control and triggering

 Allows acquiring image from CL camera

- Powerful DMA over
 PCIe
- AXI Stream interface to CL receiver

Image Acquisition and Processing Firmware

MicroTCA.4 for Industry and Research

Image Acquisition System - Software

- API for EPICS, DOOCS and QT
- Library for 3 cameras:
 - Microtron
 - > PCO
 - > Andor
- Available nodes:
 - Frame Grabber
 - Camera control
 - Camera image
- Linux driver and NDS library
- HMI panels

MicroTCA.4 for Industry and Research

Image Acquisition – EPICS Panels

MicroTCA.4 for Industry and Research

Summary

- Powerful image acquisition and processing system based on MTCA.4 system
- AMC frame grabber card with support for Camera (CL Full-Extended)
- IEEE 1588 timing module
- External high-performance industrial CPU with PCIE x16, gen. 3, GPU, DAN/SDN

Enjoy the working system:

MicroTCA.4 for Industry and Research

Thank you for your attention

MicroTCA.4 for Industry and Research

