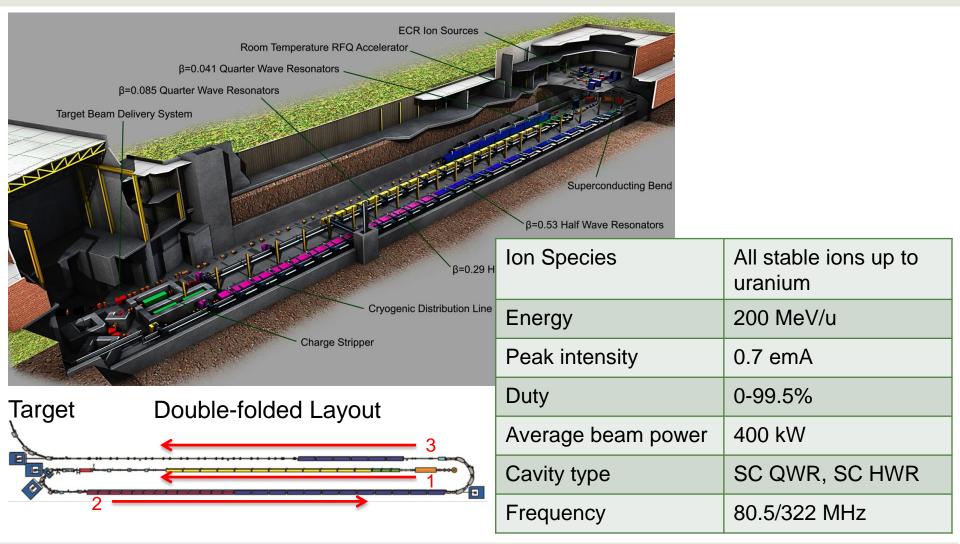


MTCA.4 at FRIB

Martin Konrad Control System Engineer


This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

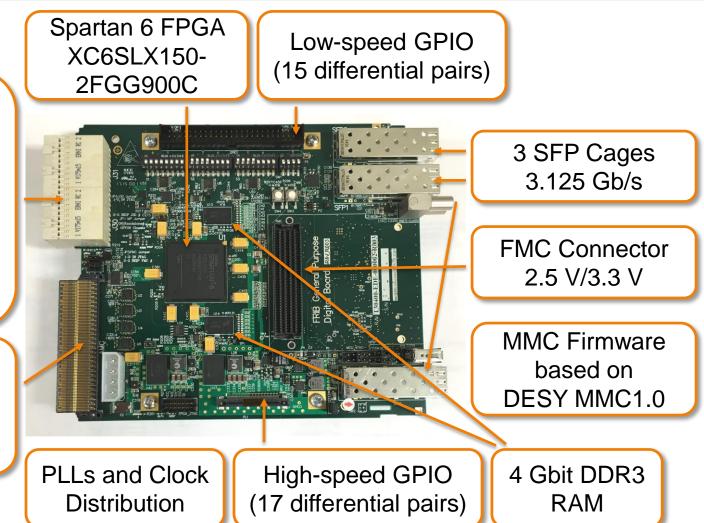
- Facility for Rare Isotope Beams
- MTCA.4 Hardware at FRIB
- Generating FRU EEPROM Images

Layout and Design Parameters for FRIB Driver Linac

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

FRIB Construction Site


Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

M. Konrad, December 2015 MicroTCA Workshop, Slide 4

FRIB General Purpose Digital Board I

40-pair RTM connector (can also be populated with 30-pair connector) 66 differential pairs, 2 clocks, 2 MGTs

AMC Connector (PCIe x1, GbE, Clocks and Triggers)

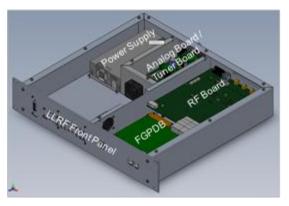
Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

FRIB General Purpose Digital Board II

Board is designed for MTCA.4 as well as stand-alone operation

Monitoring in stand-alone mode


- MMC monitors sensors, sends sensor data to FPGA with a rate of 1 Hz
- FPGA passes this data on to the control system (Ethernet)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

MTCA.4 Hardware at FRIB I

- Low-level RF Controllers
 - FRIB General Purpose Digital Board (347 cards)
 - LLRF "RTM"
 - » PCB is larger than MTCA.4 to improve signal quality
 - »40 pair RTM connector
 - » Not following DESY's RTM recommendation
 - Designed for pizza boxes

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

MTCA.4 Hardware at FRIB II

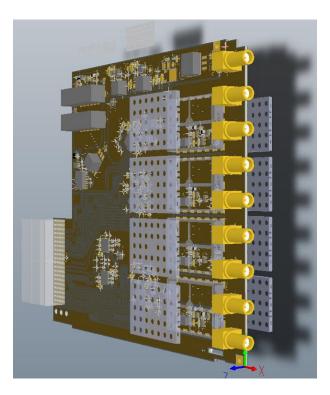
- Machine Protection System
 - AMC: FRIB General Purpose Digital Board (53 cards)
 - RTM: MPS I/O Board (53 cards)
 - Up to 132 I/O channels for 44 devices in 1 U

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

MTCA.4 Hardware at FRIB III

- Beam Current Monitors
 - AMC: Struck SIS8300-L2 (3 cards)
 - RTM: Struck SIS8900 (3 cards)


MTCA.4 Hardware at FRIB IV

Beam Position Monitors

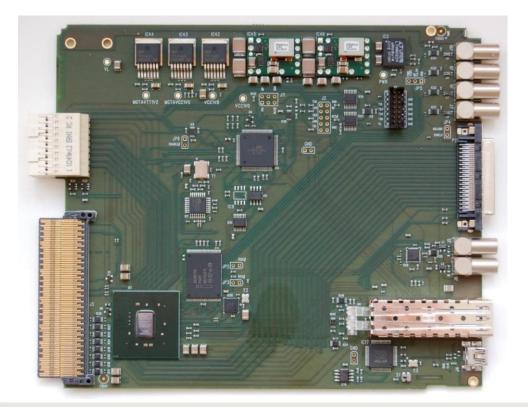
- AMC: FRIB General Purpose Digital Board (~75 cards)
- RTM: based on FRIB LLRF "RTM" (~75 cards)

»9 channels (2 BPMs + RF reference)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

MTCA.4 Hardware at FRIB V

- Beam Loss Monitors/Faraday Cups/Profile Monitors
 - AMC/FMC: Testing CAENels AMC-PICO-8 picoammeter (~50/100 cards)
 - Analog bandwidth has been improved to 50-70 kHz
 - Working with CAENels to develop a 1 kV variant of the card (so far ≤300 V) »1 MS/s, up to 1 mA



MTCA.4 Hardware at FRIB VI

Timing

- We are considering the new Micro Research Finland AMC as an event receiver for our diagnostics MTCA.4 chassis
- FGPDB might be an alternative

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Generating FRU EEPROM Images

- We need to generate binary images for the FRU EEPROMs on our AMCs/RTMs
- Problem:
 - We want to use Continuous Integration which rules out most tools on the market
 - We want to avoid signing an NDA/paying license fees/vendor lock in
- We did not find a tool out there that met our requirements so we developed our own

GenerateFRUStorage

Highlights

- Support for AMCs/RTMs
- Runs from command line (easy to automate)
- Translates a JSON input file into binary
- Support for E-Keying

» Ethernet

» PCle

» Clocks (!)

- C++, object oriented, modular, easy to extend
- Very good unit test coverage
- Support for building Debian packages
- Open Source (patches welcome!)
- Downsides
 - Needs to be compiled before it can be used
- https://stash.nscl.msu.edu/projects/MTCA/repos/generatefrustorage

Summary

- FRIB will use MTCA.4 hardware for some sub-systems
 - Mix of COTS and in-house developed hardware
- In-house developed hardware
 - FRIB General Purpose Digital Board
 - Machine Protection System RTM
 - Beam Position Monitor RTM
 - Beam Loss Monitor and Picoammeter Analog Board (under development with CAENels)
- For cost reasons some systems will use MTCA.4-compatible boards in pizza boxes
- GenerateFRUStorage generates FRU EEPROM images for AMCs/RTMs

