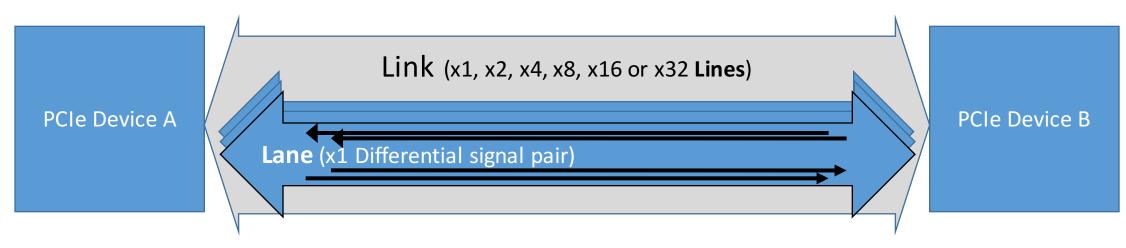
# MTCA PCI Express and PCI Express Hot Plug

L.Petrosyan




# PCI Express Link and Lanes



PCI Express (Peripheral Component Interconnect Express) is a computer bus which moves information between the internal Hardware of a computer system (including the CPU and RAM) and peripheral devices. It is a collection of wires and protocols that allows for the expansion of a computer.

- PCI Express is a serial point-to point connection.
- Each device sits on its own dedicted bus, which in PCIe lingo is called Link.
- on one bus (*Link*) there can be only two devices
- Each link is composed of one or more Lanes.
- Each Lane is a *differential signal pair* in each direction



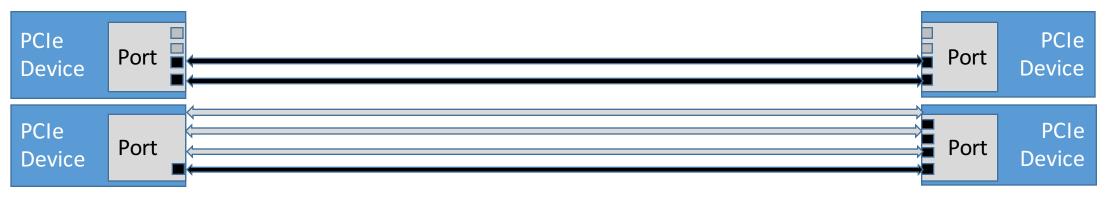




# PCI Express Port



The **PCI express Device** is identified by **Vendor/Device ID**s are commonly called the PCI ID.


The 16-bit vendor ID is allocated by the PCI-SIG. The 16-bit device ID is then assigned by the vendor.

The **PCI express Device** addressed by **Bus number** or/and by **Memory address** assigned to the current device

- Port is the interface between a PCI Express component and the Link
- It consists of differential transmitters and receivers.

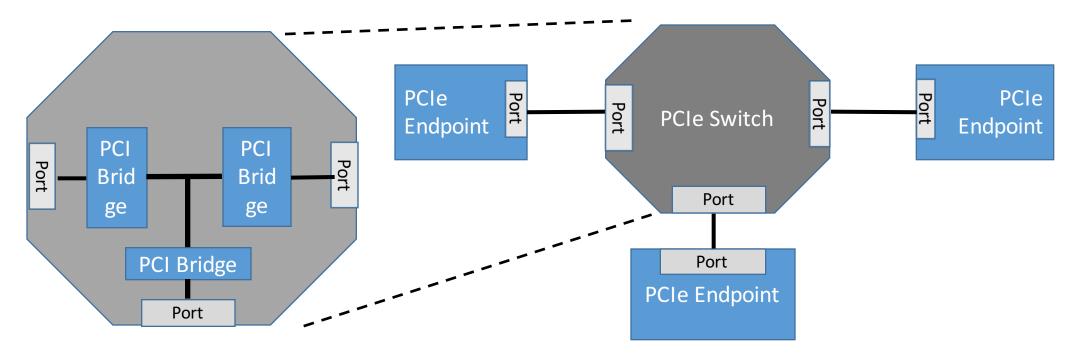


The number of Link lines and transmitters of the port can differ








# PCI Express Switch



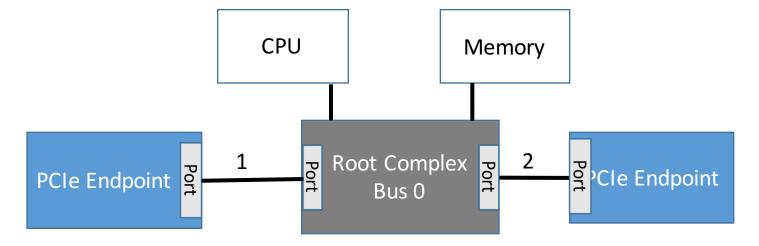
- PCI Express is a point-to-point connection between two devices
- To add more devices
- we need more buses

L.Petrosyan MCS4 DESY

PCI Express Switch add buses and controls several point-to-point serial connections.



Switch has two or moe logical PCI-to-PCI bridges, each bridge associated with a switch port






# PCI Express Root Complex



- The Root Complex denotes the device that connects The CPU and memory subsystems to the PCI Express fabric
- It may support one or more PCI Express Ports



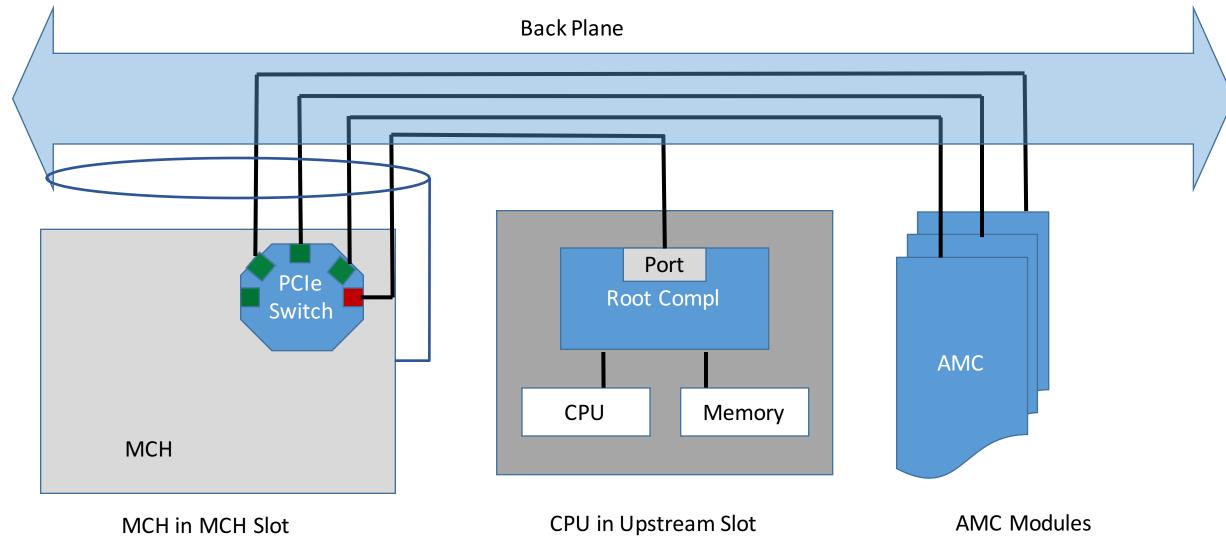
- Root Complex generates PCI Express configuration and enumerates the System
- PCI Express transactions use the address (bus:device) and memory routing
- The Root Complex Bus number initialize to 0





# PCI Express

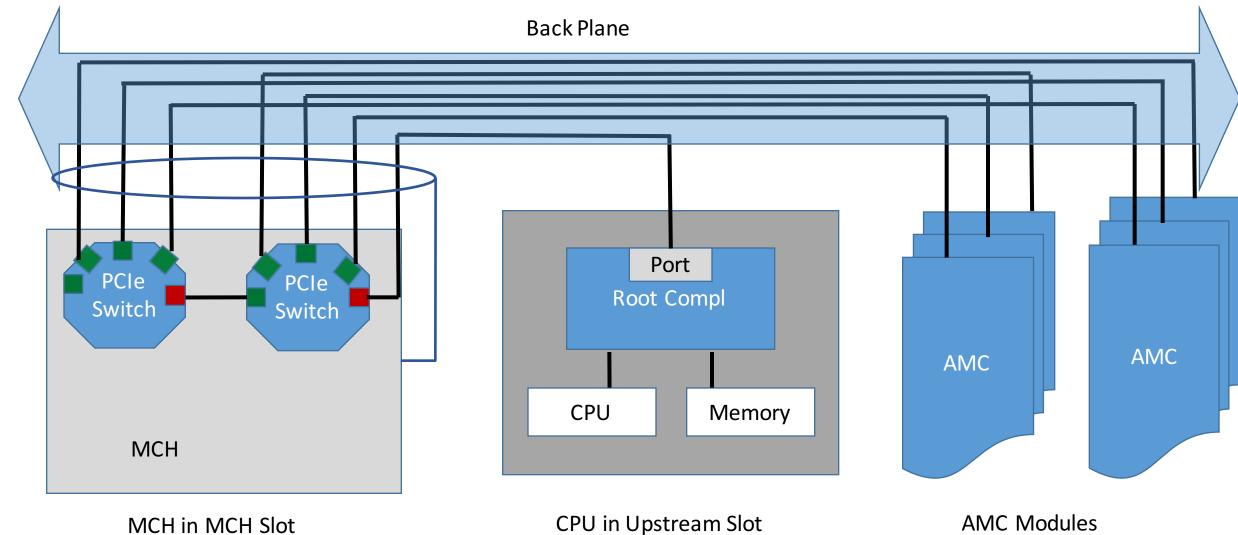



multiple switch devices can be connected to ports on the root complex or

cascaded CPU Memory **Root Complex** Root Complex 10 PCle Po PCle 1 Po. Port Endpoint Endpoint Bus 0 Port **Upstream Port** Port 9 6 PCle **PCle** Endpoint Port Endpoint Port Port **Downstream** Port Port **Port** PCle PCle Endpoint Endpoint





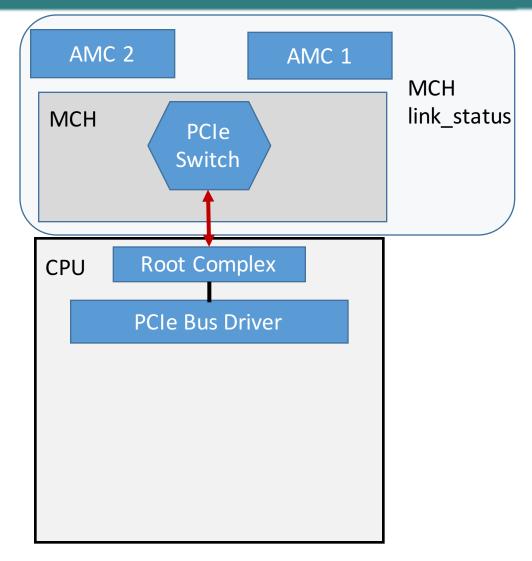










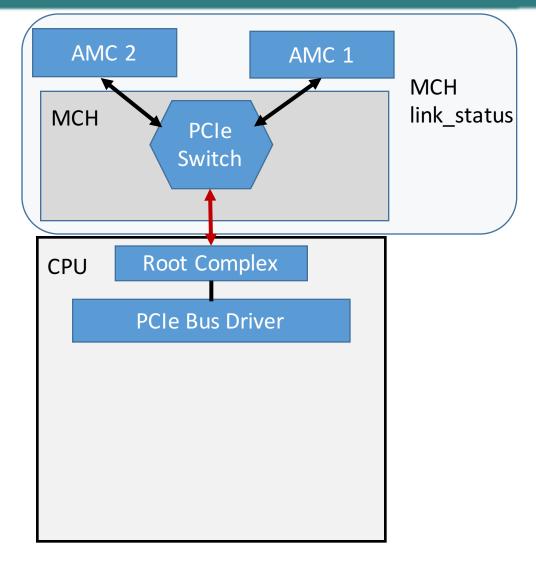










MCH sets Up Upstream Port of the PCIe Switch

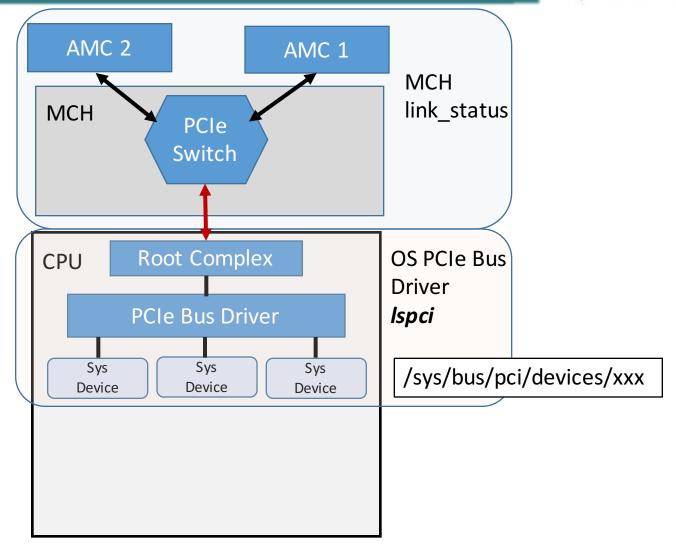









- MCH sets Up Upstream Port of the PCIe Switch
- MCH connects links to AMC slots

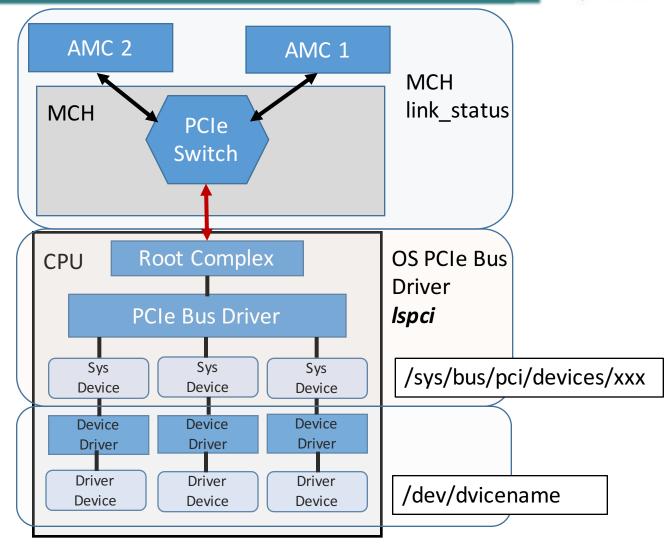








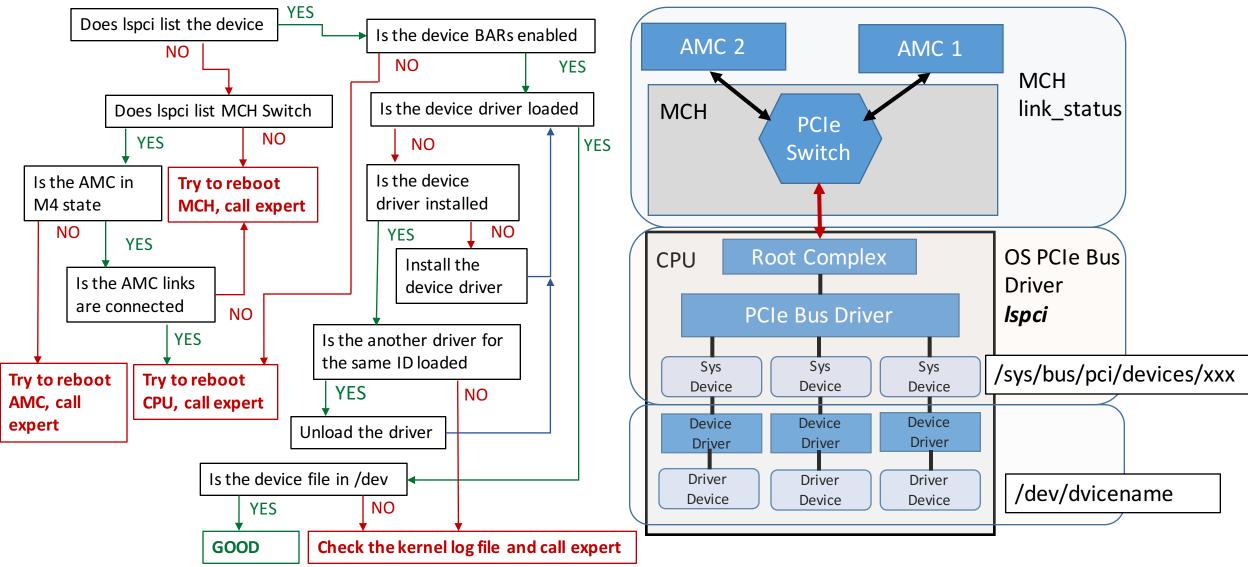

- MCH sets Up Upstream Port of the PCIe Switch
- MCH connects links to AMC slots
- Root Comples configurates and enumarates the PCI Express Busses
- OS provided PCI Express Bus Driver crates system Devices for all PCI Express devices and allocates memories
  - At this point all devices visible in *Ispci*
  - The user application could uses system Device
     Files to map Device memory for accessing to
     the device











- MCH sets Up Upstream Port of the PCIe Switch
- MCH connects links to AMC slots
- Root Comples configurates and enumarates the PCI Express Busses
- OS provided PCI Express Bus Driver crates system Devices for all PCI Express devices and allocates memories
  - At this point all devices visible in *Ispci*
  - The user application could uses system Device Files to map Device memory for accessing to the device
- RCI Express Bus Driver call for every Device appropriate driver, according of PCI Vendor/Device IDs
- Device Driver maps Device memories and crates
   Device File as entry piont
  - The user application uses Device File for accessing to the Device by means of File Operation functions

















Ispci 00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04) 00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04) 00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4) 00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04) 00:1f.2 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller (rev 04) 00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 04) 00:1f.5 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller (rev 04) 01:00.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 01:00.2 System peripheral: Integrated Device Technology, Inc. [IDT] Device 808f 02:08.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 02:0c.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:01.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:08.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0b.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:13.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 07:00.0 Communication synchronizer: Xilinx Corporation Device 0020 0a:00.0 Signal processing controller: Xilinx Corporation Device 0088 12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01) 12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

Device **Device Driver** Driver **OS PCIe Bus** PCIe Bus Driver Driver Root Complex **CPU** Ispci **PCle MCH MCH** Switch link status SIS8300 board Vendor ID 10EE (XILINX) AMC 1 Device ID 0088 (DESY dev. ID)







## Ispci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09)

00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09)

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04)

00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04)

00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4)

00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 04)

00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04)

00:1f.2 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller (rev 04)

00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 04)

00:1f.5 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller (rev 04)

01:00.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f

01:00.2 System peripheral: Integrated Device Technology, Inc. [IDT] Device 808f

02:08.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f

02:0c.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f

03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:01.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:08.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

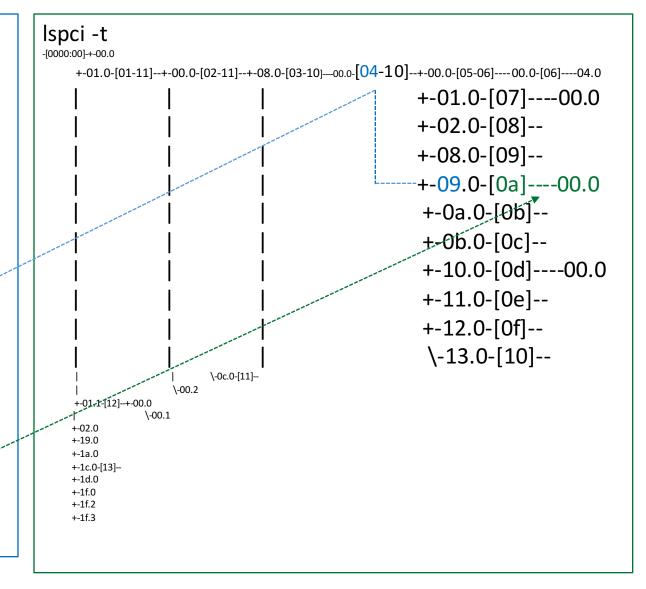
04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:0b.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)


04:13.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

07:00.0 Communication synchronizer: Xilinx Corporation Device 0020

0a:00.0 Signal processing controller: Xilinx Corporation Device 0088

12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)









### Ispci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04) 00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04) 00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4) 00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04) 00:1f.2 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller (rev 04) 00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 04) 00:1f.5 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller (rev 0.4) 01:00.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 01:00.2 System peripheral: Integrated Device Technology, Inc. [IDT] Device 808f 02:08.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 02:0c.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rév ba) 04:01.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:08.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0b.0 PCI bridge: PLX Technólogy, Inc. Device 8748 (rev ba) 04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:13.0 PCl/bridge: PLX Technology, Inc. Device 8748 (rev ba) 07:00.0 Communication synchronizer: Xilinx Corporation Device 0020 0a:00.0 Signal processing controller: Xilinx Corporation Device 0088

Ispci -vvv -s 0a:00.0 0a:00.0 Signal processing controller: Xilinx Corporation Device 0088 Subsystem: Device 3300:0088 Physical Slot: 6 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+66MHz-UDF-FastB2B-ParErr-DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 79 Region 0: Memory at c4000000 (32-bit, non-prefetchable) [size=64M] Region 1: Memory at c0000000 (32-bit, non-prefetchable) [size=64M] Region 2: Memory at c8000000 (32-bit, non-prefetchable) [size=16M] Expansion ROM at <ignored>[disabled] Capabilities: [40] Power Management version 3 Flags: PMECIk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-) Status: D0 NoSoftRst- PME-Enable- DSel=0 DScale=0 PME-Capabilities: [48] MSI: Enable+ Count=1/1 Maskable- 64bit+ Address: 00000000fee005d8 Data: 0000 Capabilities: [60] Express (v1) Endpoint, MSI 00 MaxPayload 512 bytes, PhantFunc 1, Latency LOs unlimited, L1 unlimited ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset-DevCtl: Report errors: Correctable- Non-Fatal- Fatal- Unsupported-RlxdOrd+ ExtTag- PhantFunc- AuxPwr- NoSnoop+ MaxPayload 128 bytes, MaxReadReg 512 bytes CorrErr- UncorrErr- FatalErr- UnsuppReq- AuxPwr- TransPend-DevSta:

Port #0, Speed 2.5GT/s, Width x4, ASPM LOs, Latency LO unlimited, L1 unlimited

ClockPM- Surprise- LLActRep- BwNot-

InkCtl: ASPM Disabled; RCB 64 bytes Disabled- Retrain- CommClk-

ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-

Speed 2.5GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-

Capabilities: [100 v1] Device Serial Number 00-00-00-00-00-00-00

Kernel driver in use: pciedev Kernel modules: pciedev



12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01) 12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)





### Ispci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04) 00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04). 00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4) 00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller:#1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04) 00:1f.2 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller (rev 04) 00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 04) 00:1f.5 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller (rev 04) 01:00.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 01:00.2 System peripheral: Integrated Device Technology, Inc. [IDT] Device 808f 02:08.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 02:0c.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f 03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:01.0 PCI bridge: PtX Technology, Inc. Device 8748 (rev ba) 04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:08.0-PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:0b.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 04:13.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) 07:00.0 Communication synchronizer: Xilinx Corporation Device 0020 0a:00.0 Signal processing controller: Xilinx Corporation Device 0088 12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

### Ispci -vv -s 04:09.0

04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba) (prog-if 00 [Normal decode])

Control: 1/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+

-\$fatus: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-

Latency: 0, Cache Line Size: 64 bytes

Bus: primary=04, secondary=0a, subordinate=0a, sec-latency=0

### Memory behind bridge: c0000000-c8ffffff

Secondary status: 66MHz-FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR-

BridgeCtl: Parity- SERR- NoISA- VGA- MAbort- >Reset- FastB2B-

PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn-

Capabilities: [40] Power Management version 3

Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0+,D1-,D2-,D3hot+,D3cold+)

Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-Capabilities: [48] MSI: Enable+ Count=1/8 Maskable+ 64bit+

Address: 00000000fee00478 Data: 0000 Masking: 000000fe Pending: 00000000

Capabilities: [68] Express (v2) Downstream Port (Slot+), MSI 00

DevCap: MaxPayload 512 bytes, PhantFunc 0, Latency LOs <64ns, L1 <1us

ExtTag- RBE+ FLReset-

DevCtl: Report errors: Correctable- Non-Fatal- Fatal- Unsupported-

RlxdOrd+ ExtTag- PhantFunc- AuxPwr- NoSnoop+ MaxPayload 128 bytes, MaxReadReq 128 bytes

DevSta: CorrErr+ UncorrErr- FatalErr- UnsuppReq+ AuxPwr- TransPend-

**LnkCap**: Port #9, Speed unknown, Width x4, ASPM L0s L1, Latency L0 <4us, L1 <4us

ClockPM- Surprise+ LLActRep+ BwNot+

LnkCtl: ASPM Disabled; Disabled- Retrain- CommClk-

ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-

LnkSta: Speed 2.5GT/s, Width x4, TrErr- Train- SlotClk- DLActive+ BWMgmt+ ABWMgmt-

SltCap: AttnBtn+ PwrCtrl+ MRL+ AttnInd+ PwrInd+ HotPlug+ Surprise-

**Slot #6**, PowerLimit 25.000W; Interlock+ NoCompl-

SItCtl: Enable: AttnBtn+ PwrFlt- MRL+ PresDet+ CmdCplt+ HPIra+ LinkChg-

Control: AttnInd Off, PwrInd On, Power-Interlock-

SltSta: Status: AttnBtn- PowerFlt- MRL- CmdCplt- PresDet+ Interlock-

Changed: MRL- PresDet-LinkState+



12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)





Checking MCH Link connections

```
nat> show fru
                                                                       nat> show link state
                                                                       AMC 1 Port 0 is Ethernet - 1000Base-BX
FRU Information:
                                                                       AMC 1 Port 4 is PCle - x4 - 2,5 GT/s
                                                                       AMC 1 Port 5 is PCle - x4 - 2,5 GT/s
FRU Device State Name
                                                                       AMC 1 Port 6 is PCle - x4 - 2,5 GT/s
                                                                       AMC 1 Port 7 is PCle - x4 - 2,5 GT/s
                                                                       AMC 3 Port 4 is PCle - x1 - 2,5 GT/s
0 MCH
          M4 NMCH-CM
   mcmc1 M4
                NAT-MCH-MCMC
                                                                       AMC 4 Port 4 is PCle - x1 - 2.5 GT/s
                                                                       AMC 6 Port 4 is PCle - x4 - 2,5 GT/s
5 AMC1
           M4 CCT AM 310/302
           M4 ADB7000
   AMC2
                                                                       AMC 6 Port 5 is PCle - x4 - 2,5 GT/s
   AMC3
           M4 X2TIMER
                                                                       AMC 6 Port 6 is PCle - x4 - 2,5 GT/s
                                                                       AMC 6 Port 7 is PCle - x4 - 2,5 GT/s
  AMC4
           M4 AMC-ADIO24
   AMC5
           M4 DAMC2V2
                                                                       AMC 10 Port 0 is Ethernet - 1000Base-BX
    AMC6
            M4 SIS8300
                                                                       AMC 10 Port 4 is PCle - x4 - 8,0 GT/s
   AMC7
           M1 SIS8300
                                                                       AMC 10 Port 5 is PCle - x4 - 8,0 GT/s
                                                                       AMC 10 Port 6 is PCle - x4 - 8,0 GT/s
   AMC10 M4 CCT AM 900/412
          M4 Cooling Unit
   CU1
                                                                       AMC 10 Port 7 is PCle - x4 - 8,0 GT/s
   CU2
          M4
               Cooling Unit
   PM4
           M4 NAT-PM-DC
    Clk1
          M4 MCH-Clock
61 Hub1
           M4 MCH-PCle
```





### Ispci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09)
00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

02:08.0 PCl bridge: Integrated Device Technology, Inc. [IDT] Device 808f 02:0c.0 PCl bridge: Integrated Device Technology, Inc. [IDT] Device 808f

03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:01.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:08.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:0b.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

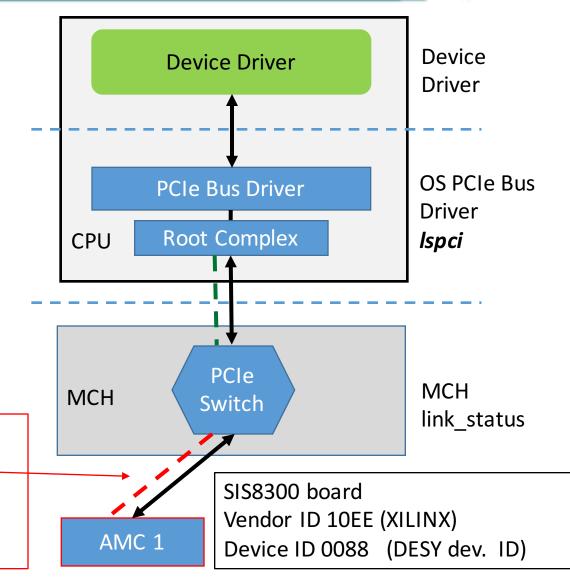
04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:13.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

07:00.0 Communication synchronizer: Xilinx Corporation Device 0020


12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

We could see the MCH PCIe Switch but not our Device

The problem is here

- 1. Check is the Device powered ON
- Check Link\_state in MCH
- 3. Check Kernel log file for any PCIe errors









Ispci -H1

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09)

00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09)

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04)

00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04)

00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4)

00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 04)

00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04)

00:1f.2 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller (rev 04)

00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 04)

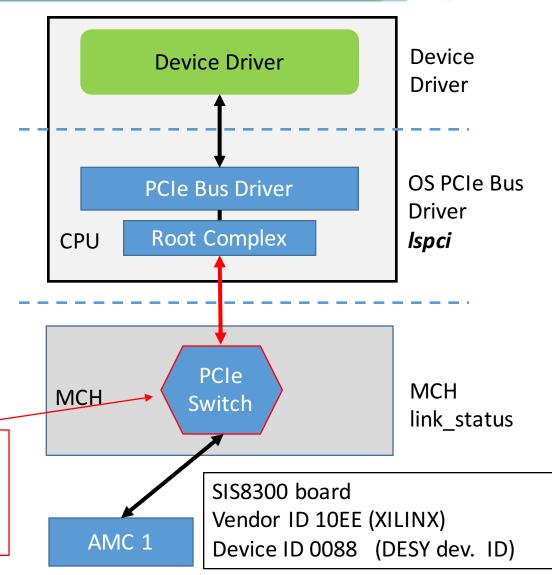
00:1f.5 IDE interface: Intel Corporation 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller (rev 04)

01:00.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f

01:00.2 System peripheral: Integrated Device Technology, Inc. [IDT] Device 808f

02:08.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f

02:0c.0 PCI bridge: Integrated Device Technology, Inc. [IDT] Device 808f


12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

We could not see the MCH PCIe Switch

The problem is here

- 1. Check is the CPU in Upstream Slot
- 2. Try to reboot the MCH and CPU









### Ispci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09)
00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

02:08.0 PCl bridge: Integrated Device Technology, Inc. [IDT] Device 808f 02:0c.0 PCl bridge: Integrated Device Technology, Inc. [IDT] Device 808f

03:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:00.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:01.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:02.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:08.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:09.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:0a.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:0b.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:10.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

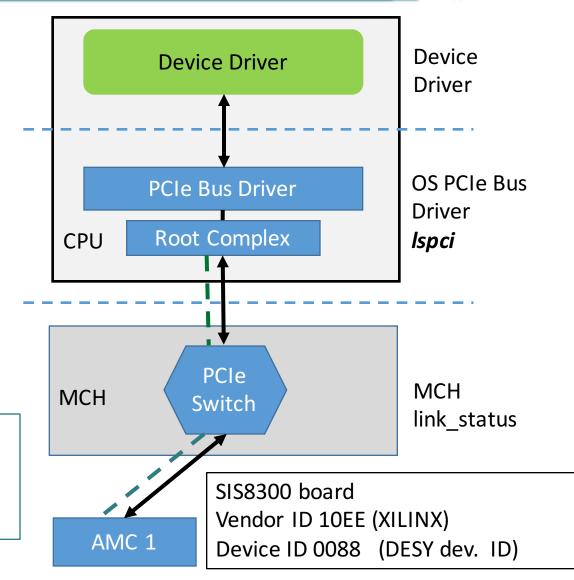
04:11.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:12.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

04:13.0 PCI bridge: PLX Technology, Inc. Device 8748 (rev ba)

0a:00.0 Signal processing controller: Xilinx Corporation Device 0088

07:00.0 Communication synchronizer: Xilinx Corporation Device 0020


12:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

12:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

### The Device is on the PCIe Bus

Check is the Device driver binded to the Device

- 1. Check *Ispci –vvv*
- 2. Check Decvice Driver File in /dev







# PCI Express Hot Plug



### **PCI Express Hot Plug**

- A Method of replacing failed expansons cards keeping the OS and other services rinning during the repair
- Shutting down and restarting software associated wiht the failed device

### To accomplish those task the Hot Plug has to:

- Monitor of the PCI Express slot events and reports these events to software via interrupts
- Selectively turns ON and OFF the Power and Attention Indicators
- Prepares the Card, Slot and proccesses for the card's removal or insertion
- Remove or applay power to the Card connector





# PCI Express Hot Plug



### For performance above the stated conditions some new components step on the stage

### **Hardware Componenets**

PCI Express Switch Hot Plug Hot Plug Controller

- Receives and processes commands Issued by the Hot Plug Software components and Port interface
- One controller for each Root or Switch port

### **PCI Express Port Interface**

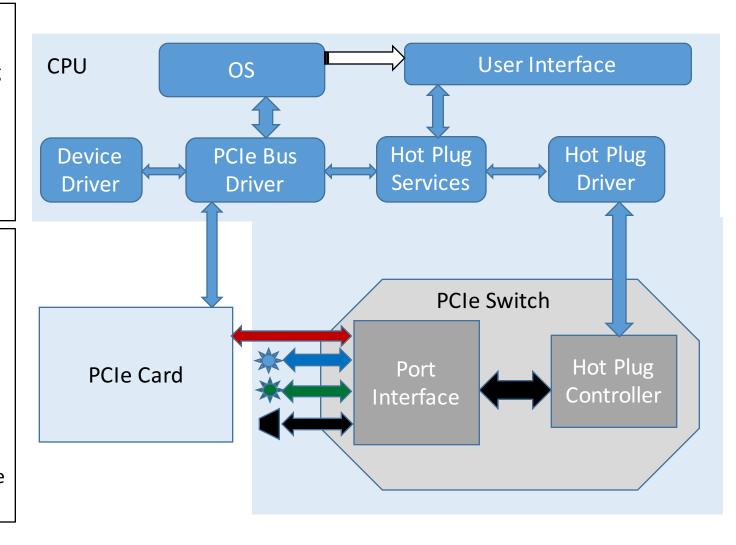
 Controls Port componenets: power, Indicators and Switches

### Software Componenets

### **User Interface**

Permits the end user to control and monitor Hot Plug

### **Hot Plug Services**

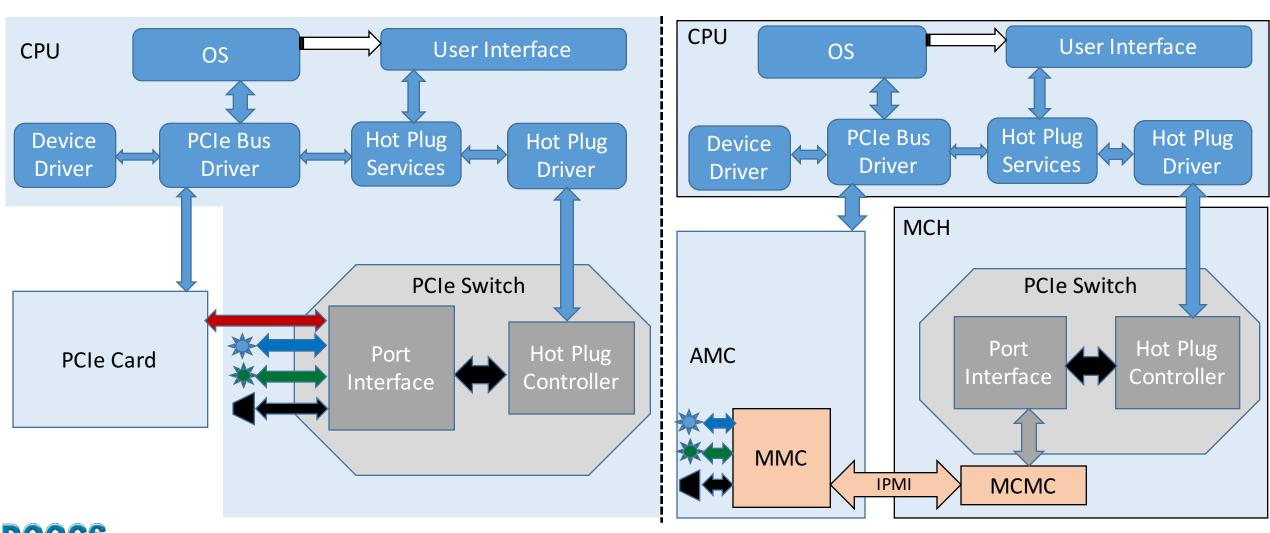

 A OS provided software components that processes Hot Plug requests issued by User and Hardware

### **Hot Plug System Driver**

Controls the Hot Plug Controller

### **Device Driver**

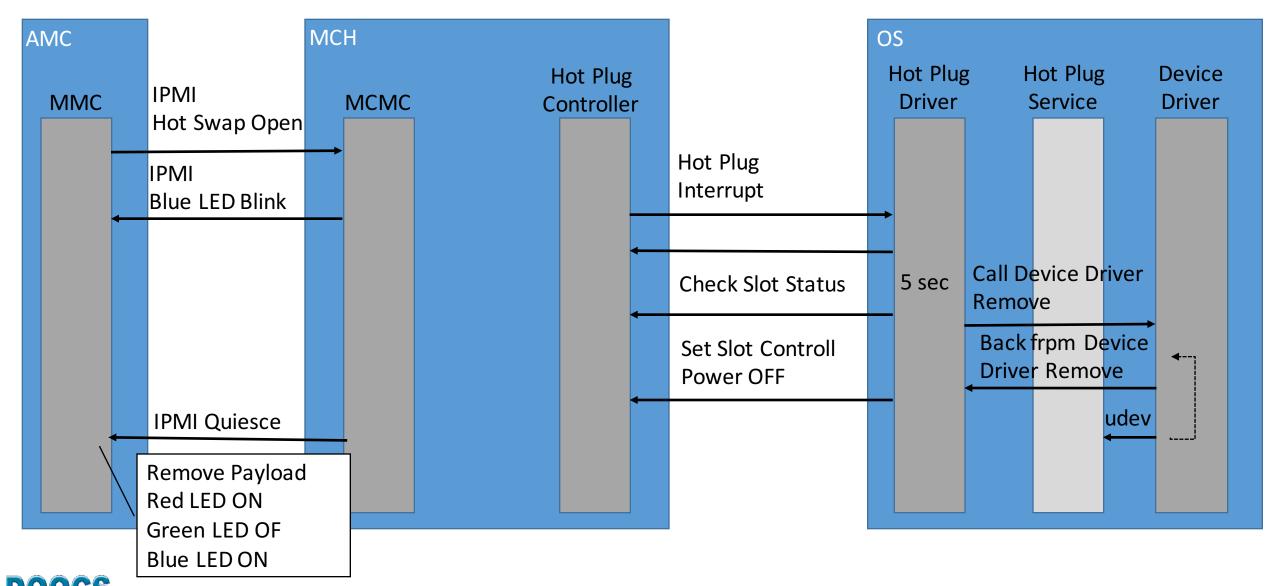
Prepares the Device to be removed or initialise the Device after insertion







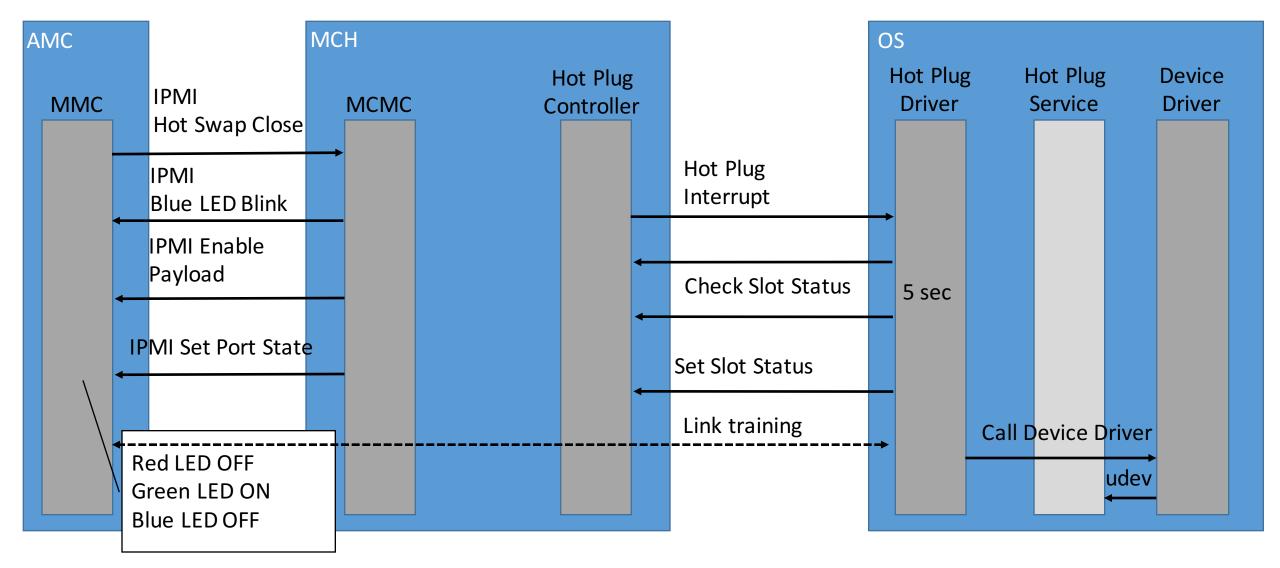

# PCI Express Hot Plug and MTCA








# PCI Express Hot Plug and MTCA








# PCI Express Hot Plug and MTCA

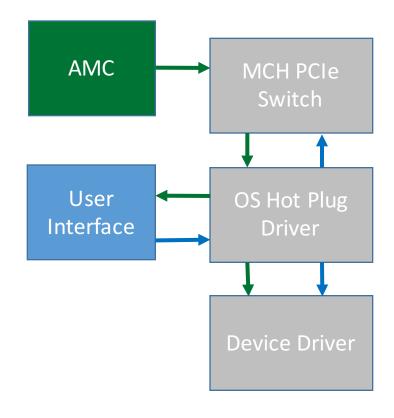








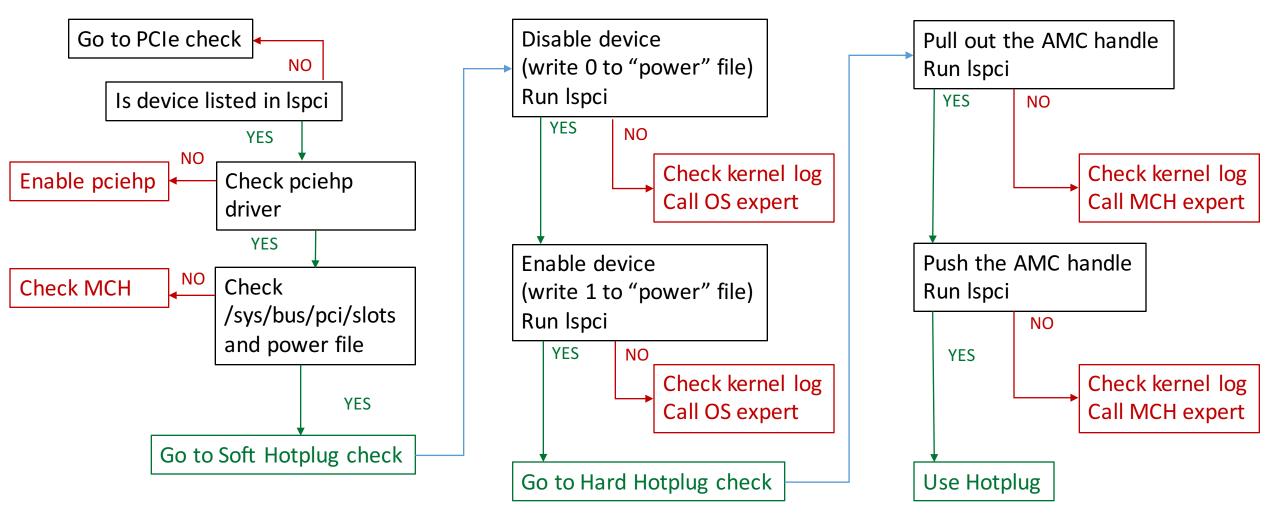



- The PCI Express Hot Plug on the MTCA depends on:
  - 1. Linux Hot Plug Driver
  - 2. MCH PCI Express Switch with the Hot Plug controller








- The PCI Express Hot Plug on the MTCA depends on:
  - 1. Linux Hot Plug Driver
  - 2. MCH PCI Express Switch with the Hot Plug controller
- 1. Hot Plug generated by the Hardware (Hardware Hot Plug)
  - Hot Plug triggered by pulling/pushing Module Latch
  - System's and Device Driver Nodes created/deleted
  - MCH turns AMC Power ON/OFF
- 2. Hot Plug generated from the user side (Soft Hot Plug)
  - Hot Plug triggered by writting 1/0 to power file
  - System's and Device Driver Nodes created/deleted
  - The AMC module remains powered

















- The PCI Express Hot Plug on the MTCA depends on:
  - 1. Linux Hot Plug Driver
  - 2. MCH PCI Express Switch with the Hot Plug controller
- To enable the PCI Express Hot Plug we have to:
  - 1. Enable Hot Plug Controller of the MCH PCI Express Switch for all ports conneted to crate slots







- The PCI Express Hot Plug on the MTCA depends on:
  - 1. Linux Hot Plug Driver

- 2. MCH PCI Express Switch with the Hot Plug controller
- To enable the PCI Express Hot Plug we have to:
  - 1. Enable Hot Plug Controller of the MCH PCI Express Switch for all ports conneted to crate slots
  - 2. Enable Linux PCI Express Hot Plug Driver
    - The PCI Express Hot Plug Driver by default is not enabled. To load the driver the follwing boot parameters have to be setted
      - UBUNTU 10 (Kernel version up to 2.8x)
        - pciehp.pciehp\_force=1 pciehp.pciehp\_debug=1
        - add these parameters in /boot/grub/menu.lst file
        - reboot the CPU
      - UBUNTU 12 (Kernel version 3.0 ->)
        - pciehp.pciehp\_force=1 pciehp.pciehp\_debug=1 pcie\_ports=native
        - add these parameters in /etc/default/grub file and call update-grub
        - reboot the CPU







### **Checking Hot Plug Driver and PCI Express Switch**

• PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number







### **Checking Hot Plug Driver and PCI Express Switch**

PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number

### Check the /sys/bus/pci/slots directory:

- The directors is empty
  - root@hostname:~# Is /sys/bus/pci/slots

. ..

- PCI Express Hot Plug Driver is not loaded
  - Check MCH configuration and OS boot parameters







### **Checking Hot Plug Driver and PCI Express Switch**

PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number

### Check the /sys/bus/pci/slots directory:

- The directors is empty
  - root@hostname:~# Is /sys/bus/pci/slots
    - . ..
    - PCI Express Hot Plug Drivar is not loaded
      - Check MCH configuration and OS boot parameters
- Strange numbers (subdirectories names)
  - root@hostname:~# Is /sys/bus/pci/slots
    - ... 0 9 17 (could not be physical slot number 0 and slot number 17 in 12 slots crate)
      - > Wrong PCI Express Switch configuration (Switch's Port Number and Slot number are same)
      - ➤ Hot Plug Controller of the PCI Express Switch is not enabled







### **Checking Hot Plug Driver and PCI Express Switch**

PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number

### Check the /sys/bus/pci/slots directory:

- OK
  - root@hostname:~# Is /sys/bus/pci/slots

... 10 11 12 2 3 4 5 6 7 8 9 (CPU in Slot 1)







### **Checking Hot Plug Driver and PCI Express Switch**

PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number

### Check the /sys/bus/pci/slots directory:

- OK
  - root@hostname:~# Is /sys/bus/pci/slots

```
... 10 11 12 2 3 4 5 6 7 8 9 (CPU in Slot 1)
```

There is file *power* in each subdirectory. In this file written 1 if there is AMC module in the current slot.

- root@hostname:~# ls /sys/bus/pci/slots/8
  - . .. adapter address attention cur\_bus\_speed lutch max\_bus\_speed module **power**
- root@hostname:~# cat /sys/bus/pci/slots/8/power







#### **Checking Hot Plug Driver and PCI Express Switch**

PCI Express Hot Plug driver creates subdirectories in /sys/bus/pci/slots for every existing PCI Express slots. In case of MTCA for every physical slot. The name of each directory is the physical slot number

#### Check the /sys/bus/pci/slots directory:

- OK
  - root@hostname:~# Is /sys/bus/pci/slots

```
... 10 11 12 2 3 4 5 6 7 8 9 (CPU in Slot 1)
```

There is file *power* in each subdirectory. In this file written 1 if there is AMC module in the current slot.

- root@hostname:~# Is /sys/bus/pci/slots/8
  - . .. adapter address attention cur\_bus\_speed lutch max\_bus\_speed module **power**
- root@hostname:~# cat /sys/bus/pci/slots/8/power

If there is AMC module in the Slot but reading from the **power** file returns 0 check MCH configuration Usualy Hot Plug Controller of the MCH PCI Express Switch is not enabled







#### **Checking Soft Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

1. Check the module using *lspci* 

L.Petrosyan MCS4 DESY

- 2. Trigger Hot Plug writting 0 to *power* file
  - echo 0 > /sys/bus/pci/slots/6/power







#### **Checking Soft Hot Plug**

Use /var/log/kern.log to watch kernel messages and Ispci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Trigger Hot Plug writting 0 to *power* file
  - echo 0 > /sys/bus/pci/slots/6/power
- 3. Check kernel log file and use *Ispci* to check the module is gone

kernel: pciehp 0000:04:09.0:pcie24: disable\_slot: physical\_slot = 6 kernel: pciehp 0000:04:09.0:pcie24: pciehp unconfigure device:

domain:bus:dev = 0000:0a:00

kernel: REMOVE CALLED

kernel: REMOVE: UNMAPPING MEMORYs

kernel: PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 247 MINOR 0







#### **Checking Soft Hot Plug**

Use /var/log/kern.log to watch kernel messages and Ispci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Trigger Hot Plug writting 0 to *power* file
  - echo 0 > /sys/bus/pci/slots/6/power
- 3. Check kernel log file and use *Ispci* to check the module is gone
- 4. Enable module writting 1 to the **power** file
  - echo 1 > /sys/bus/pci/slots/6/power

kernel: pciehp 0000:04:09.0:pcie24: disable\_slot: physical\_slot = 6 kernel: pciehp 0000:04:09.0:pcie24: pciehp unconfigure device:

domain:bus:dev = 0000:0a:00

kernel: REMOVE CALLED

kernel: REMOVE: UNMAPPING MEMORYs

kernel: PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 247 MINOR 0







#### **Checking Soft Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Trigger Hot Plug writting 0 to *power* file
  - echo 0 > /sys/bus/pci/slots/6/power
- 3. Check kernel log file and use *Ispci* to check the module is gone
- 4. Enable module writting 1 to the *power* file
  - echo 1 > /sys/bus/pci/slots/6/power
- 5. Check kernel log file and use *Ispci* to check the module is in

The Software side works. Checking Hardware part

kernel: pciehp 0000:04:09.0:pcie24: disable\_slot: physical\_slot = 6 kernel: pciehp 0000:04:09.0:pcie24: pciehp\_unconfigure\_device:

domain:bus:dev = 0000:0a:00

kernel: REMOVE CALLED

kernel: REMOVE: UNMAPPING MEMORYs

kernel: PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 247 MINOR 0

kernel:pciehp 0000:04:09.0:pcie24: \_\_pciehp\_link\_set: lnk\_ctrl = 0 kernel:pciehp 0000:04:09.0:pcie24: pciehp\_green\_led\_blink: SLOTCTRL

80 write cmd 200

kernel:PCIEDEV\_PROBE CALLED

kernel:pciedev 0000:0a:00.0: enabling device (0000 -> 0002)

kernel:PCIEDEV\_PROBE: mem\_region 0 address C0000000 SIZE

3FFFFF FLAG 40200

kernel:PCIEDEV: mem\_region 1 address C4000000 kernel:PCIEDEV: mem\_region 2 address C8000000

kernel:PCIEDEV\_PROBE: CREAT DEVICE MAJOR 247 MINOR 0 F\_NAME







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *lspci*
- 2. Pull out the AMC handle







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *lspci*
- 2. Pull out the AMC handle
- 3. Check kernel log file and use *Ispci* to check the module is gone

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering off due to button press.

kernel:PCIEDEV\_REMOVE: SLOT 6 DEV 257949696

kernel:REMOVE: UNMAPPING MEMORYs

kernel:PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 246 MINOR 0







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Pull out the AMC handle
- 3. Check kernel log file and use *lspci* to check the module is gone
- 4. Switch ON the module pushing AMC Handle

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering off due to button press.

kernel:PCIEDEV REMOVE: SLOT 6 DEV 257949696

kernel:REMOVE: UNMAPPING MEMORYs

kernel:PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 246 MINOR 0







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Pull out the AMC handle
- 3. Check kernel log file and use *Ispci* to check the module is gone
- 4. Switch ON the module pushing AMC Handle
- 5. Check kernel log file and use *lspci* to check the module is in

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering off due to button press.

kernel:PCIEDEV REMOVE: SLOT 6 DEV 257949696

kernel:REMOVE: UNMAPPING MEMORYs

kernel:PCIEDEV\_REMOVE: DESTROY DEVICE MAJOR 246 MINOR 0

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering on due to button press.

kernel:pciehp 0000:04:09.0:pcie24: pciehp check link status:

 $lnk_status = 6041$ 

kernel:PCIEDEV\_PROBE CALLED

kernel:PCIEDEV\_PROBE: mem\_region 0 address C0000000 SIZE

3FFFFF FLAG 40200

kernel:PCIEDEV\_PROBE: CREAT DEVICE MAJOR 246 MINOR 0 F\_NAME







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Pull out the AMC handle
- 3. Check kernel log file and use *Ispci* to check the module is gone
- 4. Switch ON the module pushing AMC Handle
- 5. Check kernel log file and use *lspci* to check the module is in
- 6. Run *Ispci* with *-vvv* option to checl are the boards memories mapped
- 7. Cneck Device Driver file in **/dev**
- 8. Try to access to the Device using Device Driver

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering off due to button press.

kernel:PCIEDEV\_REMOVE: SLOT 6 DEV 257949696

kernel:REMOVE: UNMAPPING MEMORYs

kernel:PCIEDEV REMOVE: DESTROY DEVICE MAJOR 246 MINOR 0

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering on due to

button press.

kernel:pciehp 0000:04:09.0:pcie24: pciehp check link status:

 $lnk_status = 6041$ 

kernel:PCIEDEV PROBE CALLED

kernel:PCIEDEV\_PROBE: mem\_region 0 address C0000000 SIZE

3FFFFF FLAG 40200

kernel:PCIEDEV PROBE: CREAT DEVICE MAJOR 246 MINOR 0 F NAME







#### **Checking Hradware triggered Hot Plug**

Use /var/log/kern.log to watch kernel messages and lspci to checl PCI Express Device

- 1. Check the module using *Ispci*
- 2. Pull out the AMC handle
- 3. Check kernel log file and use *Ispci* to check the module is gone
- 4. Switch ON the module pushing AMC Handle
- 5. Check kernel log file and use *lspci* to check the module is in
- 6. Run *Ispci* with –*vvv* option to checl are the boards memories mapped
- 7. Cneck Device Driver file in **/dev**
- 8. Try to access to the Device using Device Driver

According of the kernel log the module is ON but not listed in *Ispci* 

 Module initialisation is slow, try to enable it wriiting 1 to the *power* file kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering off due to button press.

kernel:PCIEDEV\_REMOVE: SLOT 6 DEV 257949696

kernel:REMOVE: UNMAPPING MEMORYs

kernel:PCIEDEV REMOVE: DESTROY DEVICE MAJOR 246 MINOR 0

kernel:pciehp 0000:04:09.0:pcie24: pcie\_isr: intr\_loc 1

kernel:pciehp 0000:04:09.0:pcie24: Attention button interrupt received

kernel:pciehp 0000:04:09.0:pcie24: Button pressed on Slot(6)

kernel:pciehp 0000:04:09.0:pcie24: PCI slot #6 - powering on due to

button press.

kernel:pciehp 0000:04:09.0:pcie24: pciehp\_check\_link\_status:

 $lnk_status = 6041$ 

kernel:PCIEDEV\_PROBE CALLED

kernel:PCIEDEV\_PROBE: mem\_region 0 address C0000000 SIZE

3FFFFF FLAG 40200

kernel:PCIEDEV\_PROBE: CREAT DEVICE MAJOR 246 MINOR 0 F\_NAME







### enjoy PCIe and Hot Plug...

# Thank You

