

Science & Technology Facilities Council

Mezzanine style RTMs

a "simple" route towards custom MTCA.4 signal conditioning

A beginners view 3 months into the first MTCA project

Armin Reichold

MTCAWS 2015, 10 December 2015

Engineering and Physical Science:

vadatec

xford

zsics.

DESY, 10/12/2015

Overview

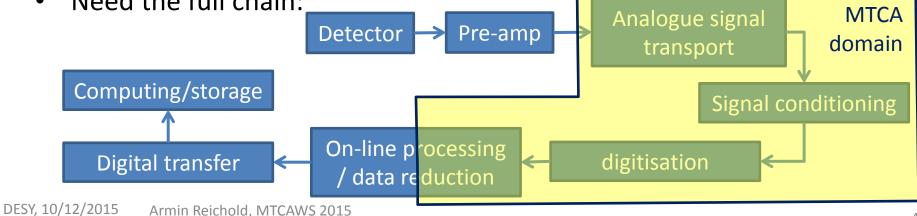
1. Motivation

- -Strategic needs at Oxford physics
- -From measurement to DAQ problem
- Pilot project needs
- 2. Design Strategy
- 3. Pilot project status
- 4. Summary no time

Part 1

MOTIVATION

DESY, 10/12/2015

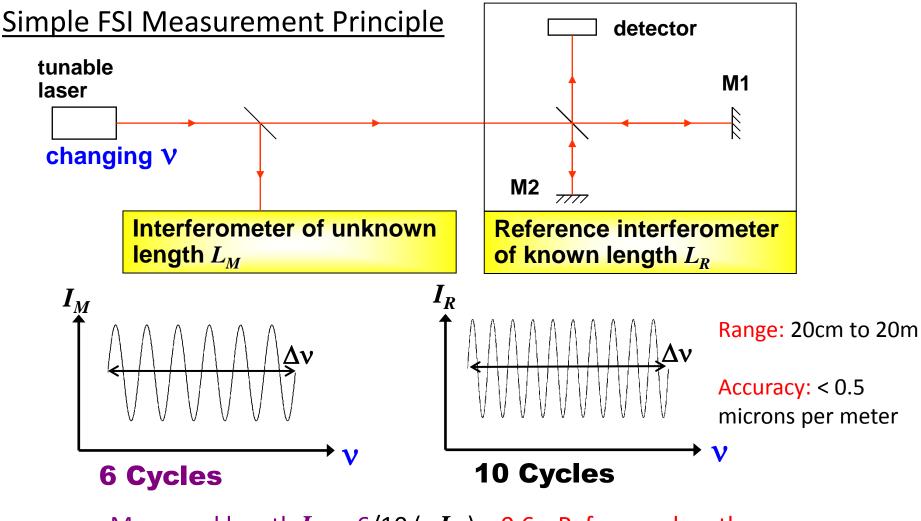

Motivation

Strategic DAQ needs in Oxford Physics

- Characterised by a large range of
 - Number of channel from few to 3*10⁹ (LSST)
 - data rates from few 100 b/s to 20 GB/s
 - signal frequencies from DC to multiple GHz
 - signal types:
 - Optical: 0 to 100 MHz optical intensities from nW to mW,
 - Optical: photon counting from Hz to MHz
 - Electrical: charge pulses from particle detector O(1000e) in O(1ns),
 - Electrical: continuous wave forms from squids $O(1\mu V)$ at 0 to O(10 kHz),

Camera ¾ Section

- Large near line computing needs (LHC, ATCA, COB, Not my forte)
- Harsh front end environments (radiation damage, radio purity, vacuum, miniaturisation)
- Need the full chain:



Examples: Backpack prototype

- Portable neutron detection
- 16 channel integrating TIA
- transformer coupled to differential ADC
- 30MHz (max 65MHz).
- serial LVDS to zestet1 fpga daughter card.
- Self calibrating

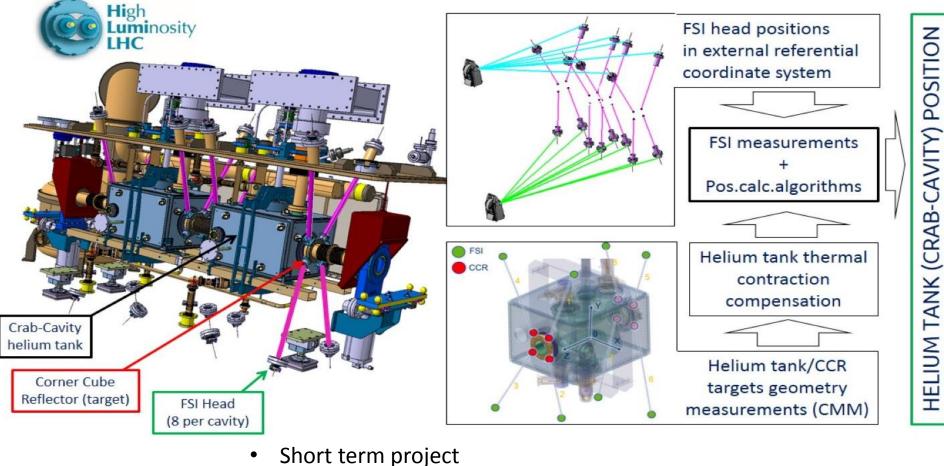
Motivation

(from measurement to DAQ problem, acute)

Measured length L_M = 6/10 (x L_R) = 0.6 x Reference length

DESY, 10/12/2015

Motivation


(FSI technology driven FUTURE requirements)

- Laser limit: signal frequency: f_{signal} < 17 MHz
- Oversampling: ≥ 5 points per fringe
- DAQ resolution: 16 bits
- Data rate: ≤ 170 MB/s per channel
- Simultaneous channels: from 8 to O(few 100)
- But luckily
- Burst mode
 - burst duration: buffer limited, 0.1 to 2 sec
 - Gap duration: transfer limited, variable to get full transfer
- Compute intensive, GPU based near-line processing

Motivation (acute scientific pilot project needs via commercial route!)

• Accelerator Physics: LHC-upgrade crab cavity alignment

CRAB-CAVITY POSITION MONITORING SYSTEM

Handled via commercial and science routes

Motivation (acute commercial pilot project needs)

- Commercial FSI system by Etalon AG
- Current DAQ
 - Fully custom crate and boards
 - Readout: N*USB2 @ N*40 MB/s
 ⇔2.5 MB/s per channel
 - ADC: 2.77 MHz at 14 bit
 - Buffer 1: ≈ 8 MB per channel near ADC
 - Channels: 16 to 96
- Future DAQ
 - uTCA.4 based solution
 - Custom optical signal conversion RTM
 - ADC: 125 MHz at 16 bit
 - − Buffer 1: \approx **170 MB** per channel near ADC
 - Buffer 2: O(10 GB) on compute AMC
 - Readout :
 - Initially: 2*10 Gb/s Ethernet @≈ 1 to 2 GB/s
 ⇔ ≤ 82 to 164 MB/s per channel¹ {via compute AMC UDP link}
 - Finally: 1*PCIe x4 Gen3.0 @≈ 3 GB/s ⇔ 250 MB/s per channel¹⁾ via MCH
 - 12 to few 100 channels
 - High availability integration into wider MTCA control systems

Absolute Multiline System (current generation) **PTALON**

Part 2

DESIGN STRATEGY

How to build MTCA.4 components without knowing MTCA.4

Design Strategy

- Now: too many custom elements in our chain
 Replace some digital custom elements with standard components
- Particularly FPGA & digital data transfer aspects develop rapidly in industry due to large markets
- MTCA.4 offers some elements but not the full chain → still need custom developments

Carrier Manager

EMMC

Backplane EPROM FRU

- But ...
- MTCA.4 = complex
- → start with a well-d fined pilot pilot project that allows AMC3 Module Pilot pilot project that allows AMC3 Storage
 - learning about MTCA.4 in all aspects
 - development without "THE" expert in house yet
 - future applications to follow asimilar route

Power Connector Power Connector Backplane Connect

PCIe

MMC

with

MMC

MMC

MMC

GbE

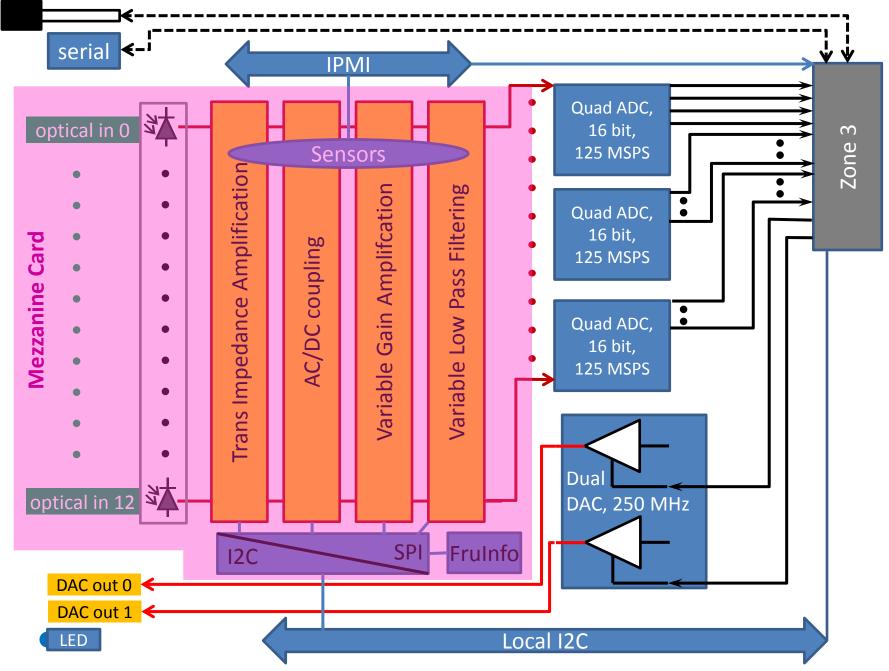
AMC

5...12

11

AMC4

CPU

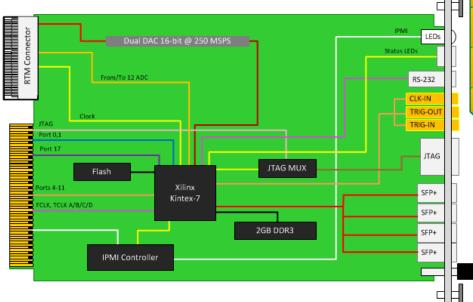

PCIe

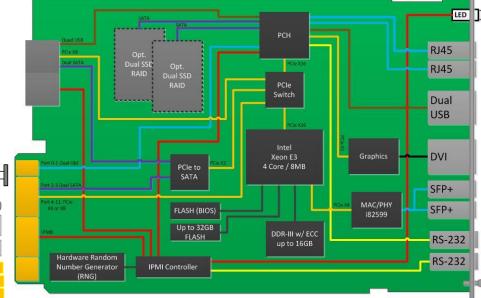
×4

Design Strategy

- Pilot project = optical to electrical FSI front-end
- AKA signal conditioning RTM
- Split MTCA.4 specific aspects from analogue problems
- AKA raisin picking
- Divide RTM into
 - mezzanine card = analogue front-end
 - RTM carrier = all MTCA aspects (IPMI, Zone3, ADC, power ...)

RTM-Raisin Picking

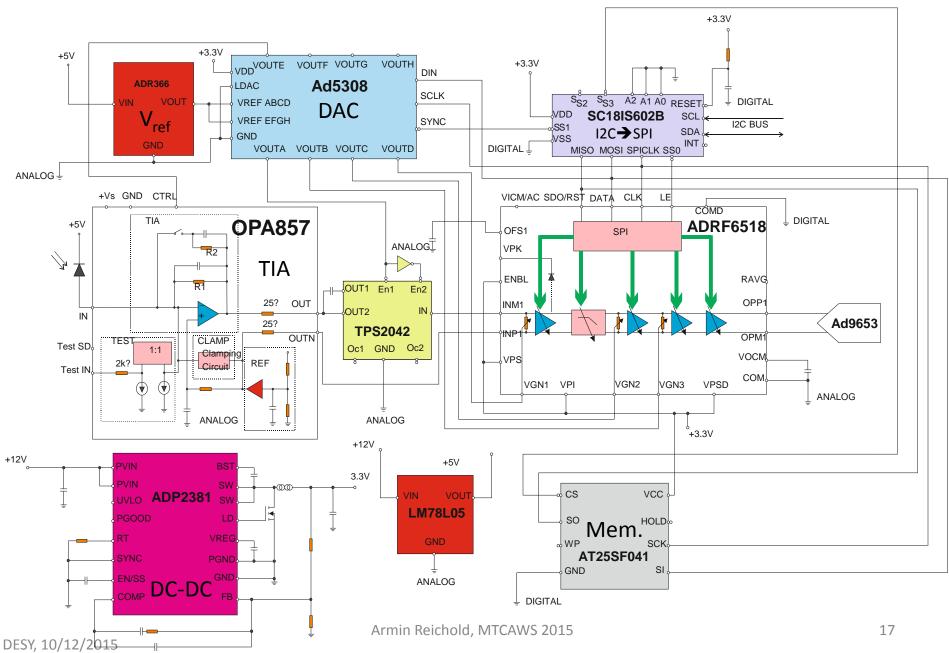

Part 3


PILOT PROJECT STATUS

Pilot Project Requirements

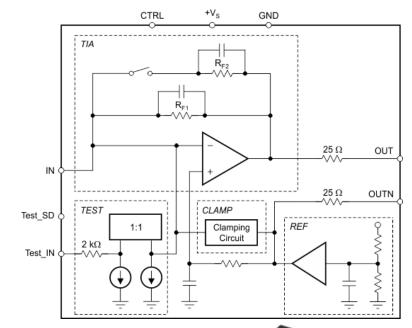
Num channels, N	8-16 (chose <mark>12</mark>)
Fibre connectors	LC sockets with PIN receptacle or pig tail
RMS Noise (full chain , gain=1 P _{ont} =0)	4*10-4 full scale (26 counts RMS @ 16 Bit)
signal frequency f _{sig}	DC to 62.5 MHz
Linearity ¹⁾	< 1%, full scale, correctable offline
Cross talk (any pair, any f _{sig} any P _{opt})	< 0,5 * RMS_max
Zero-Offset variation ΔV_{off}	+/- 0,5% full scale, correctable offline
Gain variation δg (all channels, any f_{sig})	+/- 2%
Optical input power P _{opt}	0 μW to 160 μW
min. wavelength range $\Delta\lambda$	1500 nm to 1620 nm
Gain g	1 to 160
Number of gain steps N _g	>= 32 steps, logarithmic
coupling	switchable
Anti-Aliasing-Filter control (minimum)	0,5 MHz / 5 MHz / 25 MHz / 62.5 MHz (= f _{Nvauist})
Mezzanine Power P _{mez}	20 W
Temperature sensors (via IPMI)	2 on mezzanine
	2 on RTM carrier
Voltage sensors (via IPMI)	one "per voltage" on mezzanine
	one "per voltage" on carrier
DAC (optional)	2x DAC, 250 MHz, on RTM front panel via SSMC
	(h h h h h h h h h h h h h h h h h h h

Pilot Project Status (the "easy" part = buy stuff)



Based on

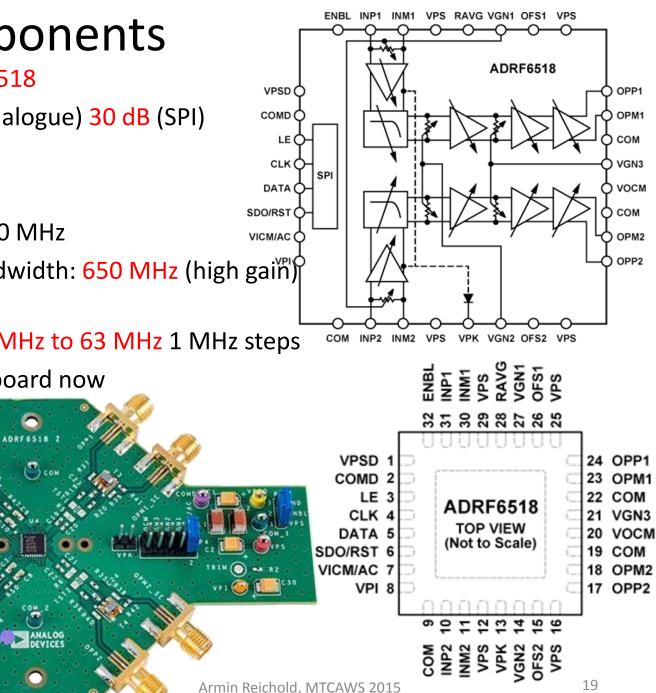
- VadaTech AMC523 for ADC
- AMC725 for compute (interim)

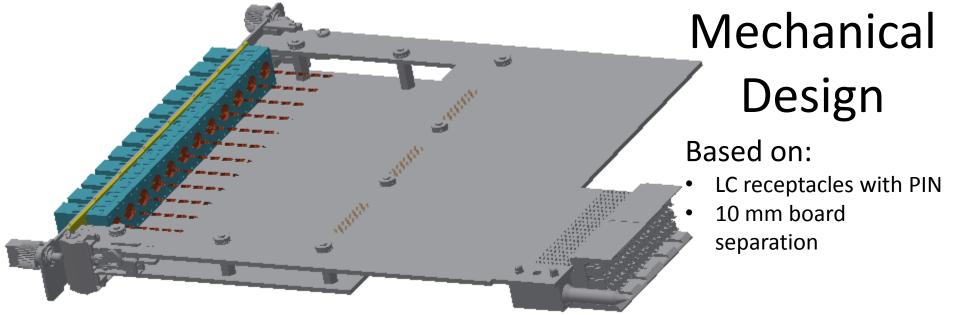


Single Channel Concept

Key components

- Texas Instruments OPA857
- Diode trans-impedance amp.
- 3x3mm
- Two stage variable feedback
- Bandwidth: 115 MHz (high gain)
- 130 MHz (low gain)
- Ultralow Current Noise: 14.7 nA_{RMS} (NPBW = 85.7 MHz)
- Evaluation board testing now




Key components

- Analog Devices ADRF6518
- Gain control: 72 dB (analogue) 30 dB (SPI)
- 5x5 mm chip
- Power = **0.4 W**

DESY, 10/12/2015

- ±1 dB gain flatness: 300 MHz
- -3 dB small signal bandwidth: 650 MHz (high gai^m) 1100 MHz (low gain)
- 6-pole Butterworth: 1 MHz to 63 MHz 1 MHz steps
- Testing on evaluation board now

Problems:

- Back connector height to match LC connectors
- Front end width and height extremely tight

DESY, 10/12/2015

Special Features

- Local I2C bus controls mezzanine (gain, filter, linearity data)
- Variable delay for clock/trigger on carrier adjusts slot delay
- Response linearisation
 - ADC:
 - Full ADC response stored on carrier per channel
 - FPGA linearises ADC response online using simulink generated processing block
 - Mezzanine:
 - gain and offset stored on mezzanine EEPROM per channel & per gain & per filter setting
 - Correction parameters available for offline use

