Summary of Tau Decays Test with MC-Tester in Athena

Zhonghua Qin

Analysis Center MC Group Meeting 21.08.2008

Short reminders about MC-Tester

- Developed originally for comparing tau decays between different versions of Tauola, and now interfaced to Athena for wider range of use.
- The result from this tool is mainly a pdf & latex booklet including:
 - A summary table showing all decay modes with the branching ratios
 - Comparison plots of invariant mass distributions of tau daughters

Any combination of the daughters in certain decay mode

Root histograms for these plots are also available

what I did...

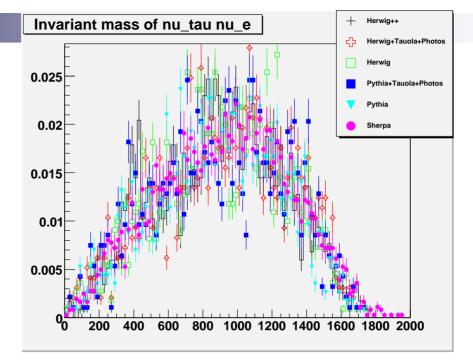
- Initial idea is to perform some tests for tau decays in Herwig++
- To this end, comparing tau decays amongst Herwig++, Herwig, Herwig +Tauola+ Photos, Pythia, Pythia+Tauola+Photos, and Sherpa.
- Using the same physics process for all generators : q qbar -> W -> tau nu_tau, tau -> anything possible
- 60000 events privately generated in Athena for each generator except that Sherpa, for which I generated the events standalone, then read them into Athena by the interface.
- For generator parameters, most of them are the generator defaults. Using Atlas CSC production parameters for Tauola and Photos.
- The test is based on the generator-level output files in HepMC format.

Branching ratios check:

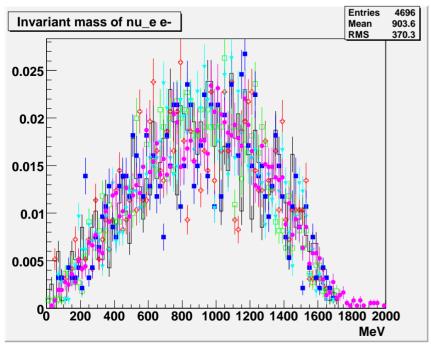
м

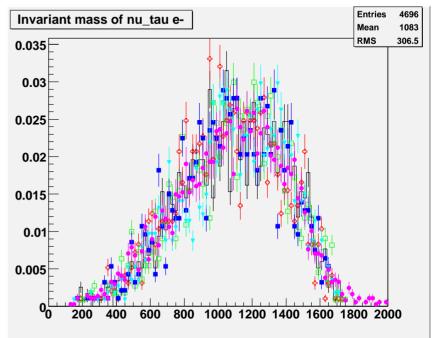
Comparison of branching ratios for the decay modes

_							
Decay Channel	Branching Ratio \pm errors (the errors for the generators are just statistics error)						
	PDG(06)	Herwig++2.2.0	Pythia6.4	ythia6.4+tauola	Herwig6.5	lerwig6.5+Tauola	Sherpa1.1.1
				+ Photos		+Photos	
$\tau^- \to \pi^- \nu_{\tau}$	10.90	11.0090	11.0606	10.8747	11.5979	10.6939	10.5953
	$\pm 0.07\%$	$\pm 0.2053\%$	$\pm 0.2081\%$	$\pm 0.2062\%$	$\pm 0.2149\%$	$\pm 0.2058\%$	$\pm 0.2042\%$
$\tau^- \to \pi^- \pi^0 \nu_{\tau}$	25.50	25.3254	25.2076	25.0039	25.4740	25.3010	24.5859
au	$\pm 0.10\%$	$\pm 0.3114\%$	$\pm 0.3142\%$	$\pm 0.3127\%$	$\pm 0.3185\%$	$\pm 0.3166\%$	$\pm 0.3110\%$
$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$	9.25	9.4626	8.8516	9.0127	8.6666	9.1096	9.0373
au	$\pm 0.12\%$	$\pm 0.1903\%$	$\pm 0.1862\%$	$\pm 0.1878\%$	$\pm 0.1858\%$	±0.1899%	$\pm 0.1886\%$
$ au^- ightarrow \pi^- \pi^- \pi^+ u_{ au}$	9.33	9.2329	9.2276	8.9970	9.1604	8.5868	8.8366
au	$\pm 0.08\%$	$\pm 0.1880\%$	$\pm 0.1901\%$	$\pm 0.1876\%$	$\pm 0.1910\%$	$\pm 0.1844\%$	$\pm 0.1865\%$
$\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_{\pi}$	4.46	4.4557	4.3397	4.4750	4.3014	4.4043	4.2452
au	$\pm 0.06\%$	$\pm 0.1306\%$	$\pm 0.1304\%$	$\pm 0.1323\%$	$\pm 0.1309\%$	$\pm 0.1321\%$	$\pm 0.1292\%$
$\tau^- \to \pi^- \pi^0 \pi^0 \pi^0 \nu_{\tau}$	1.04	1.1790	1.1750	1.2978	1.2586	0.8080	1.1685
	$\pm 0.08\%$	$\pm 0.0672\%$	$\pm 0.0678\%$	$\pm 0.0713\%$	$\pm 0.0708\%$	$\pm 0.0566\%$	$\pm 0.0678\%$
$\tau^- \to \nu_{\tau} \widetilde{\nu}_{\mu} \mu^-$	17.36	17.8380	17.6563	16.9614	16.8870	16.7617	16.9847
	$\pm 0.05\%$	$\pm 0.2613\%$	±0.2630%	$\pm 0.2576\%$	$\pm 0.2593\%$	$\pm 0.2577\%$	$\pm 0.2585\%$
_ ~ -	17.84	17.9758	17.9069	14.6299	17.5562	<i>15.3200</i>	<i>15.1198</i>
$\tau^- \to v_{\tau} \widetilde{v}_e e^-$	$\pm 0.05\%$	$\pm 0.2623\%$	$\pm 0.2648\%$	$\pm 0.2392\%$	$\pm 0.2644\%$	$\pm 0.2463\%$	$\pm 0.2439\%$
$\tau^- \to \gamma \nu_{\tau} \tilde{\nu}_{e} e^-$	1.75			2.7069		2.8042	<u>2.7108</u>
$\tau' \tau' e^{\zeta}$	$\pm 0.18\%$			$\pm 0.1029\%$		$\pm 0.10539\%$	$\pm 0.10327\%$
$\tau^- \to \gamma \nu_\tau \tilde{\nu}_\mu \mu^-$	0.36			0.6885		0.7921	0.6846
	$\pm 0.04\%$		4	$\pm 0.0519\%$		$\pm 0.05601\%$	$\pm 0.05190\%$


summary of the comparison table

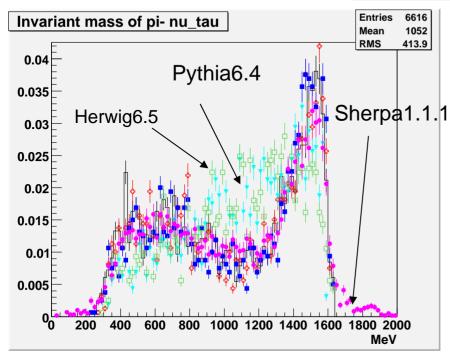
- Totally ten decay modes compared in the table, including hardronic decay, leptionic decay and the the additional photon radiation in leptonic decay.
- Photon radiation is not implemented in Herwig++ and Herwig
- PDG has no cuts on photon radiation, one should calculate the branching rations of leptonic decay and the ones of photon radiation decay together for comparison with PDG values
- For the photon radiation decay modes, the numbers I got from Herwig+Tauola+Photos, Pythia+Tauola+Photos and Sherpa are about two times larger than PDG values, which should be related to different cuts setting between the above generators and PDG.
- Anyway, all these numbers look fine and they are consistent at reasonable level for different generators

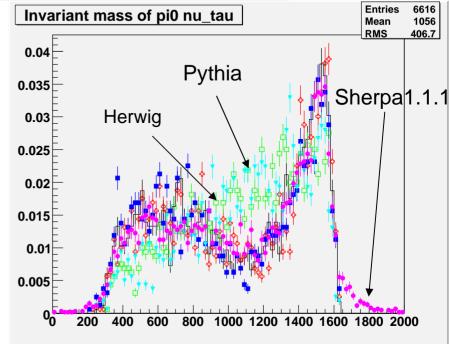



$$\tau^- \rightarrow \nu_{\tau} \tilde{\nu}_{e} e^-$$

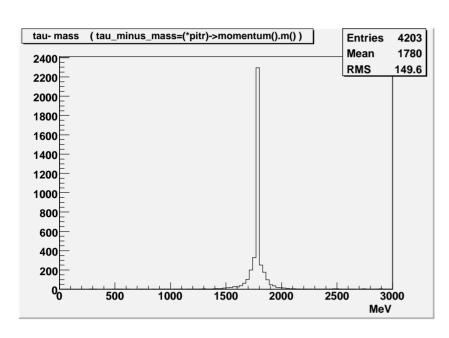
Similar distributions for all of the generators!

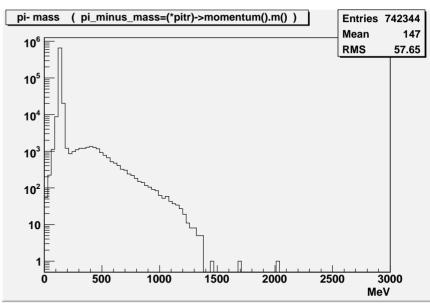
7


$$au^- o \pi^- \pi^0
u_{ au}$$


1) the distributions for Herwig and Pythia appear the different from others;

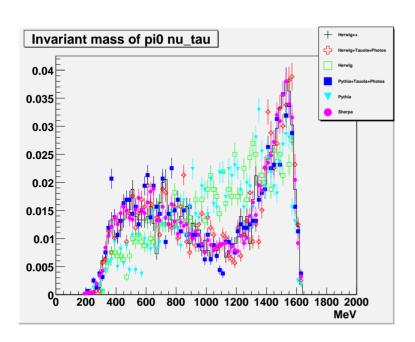
2)Sherpa has a high mass tail

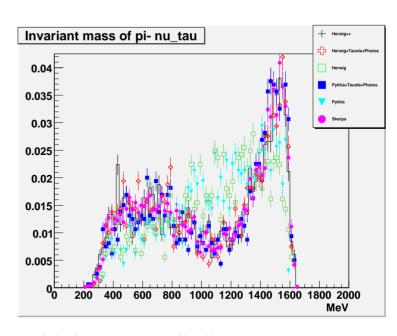

8



■ The difference appearing for Herwig and Pythia is due to : Simplified Matrix Element in Pythia and Herwig (lack of spin correlation between intermediate rho and neutrino)

■ For Sherpa high mass tail, some further tests below:




Tau Mass distribution

Pi- Mass distribution

Finally, the sherpa tau mass problem is specified to its output precision:

- Sherpa using by default a 6 significant number for momentum and other when writing out event data, so if you access some observable having small values, you will face a precision problem.
- Solutions are: increasing the output precision or run Sherpa in athena on the fly

Run Sherpa in Athena, the tau high mass tail disappears. (Also the pi mass distribution is correct.)

Summary

- Did the tau decays test for up to five generators by using MC-Tester
- branching ratios check looks ok, no significant difference found.
- For invariant mass comparison, found a problem for Sherpa and solved it.
- This shows this kind of test is necessary, and MC-Tester is a nice tool
- Should mention that no obvious problems found for Herwig++ in the test.