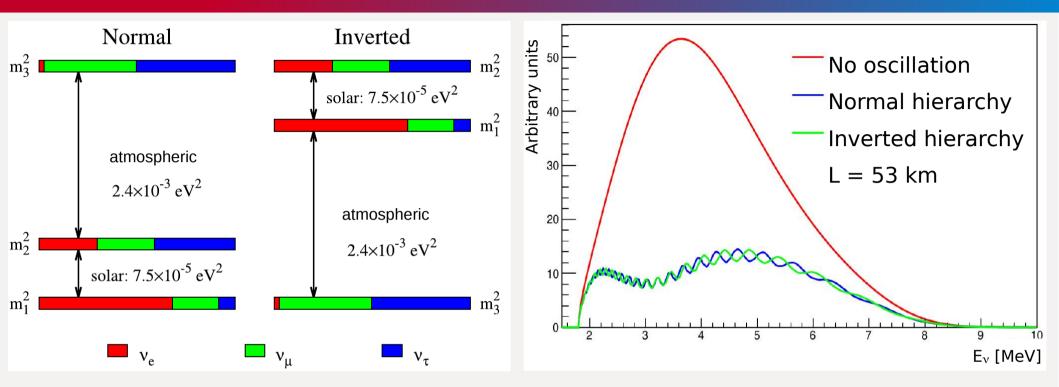

Neutrino Astrophysics with JUNO

- Sebastian Lorenz -

on behalf of the JUNO collaboration

Magellan Workshop – Connecting Neutrino Physics and Astronomy DESY, Hamburg, March 18th 2016

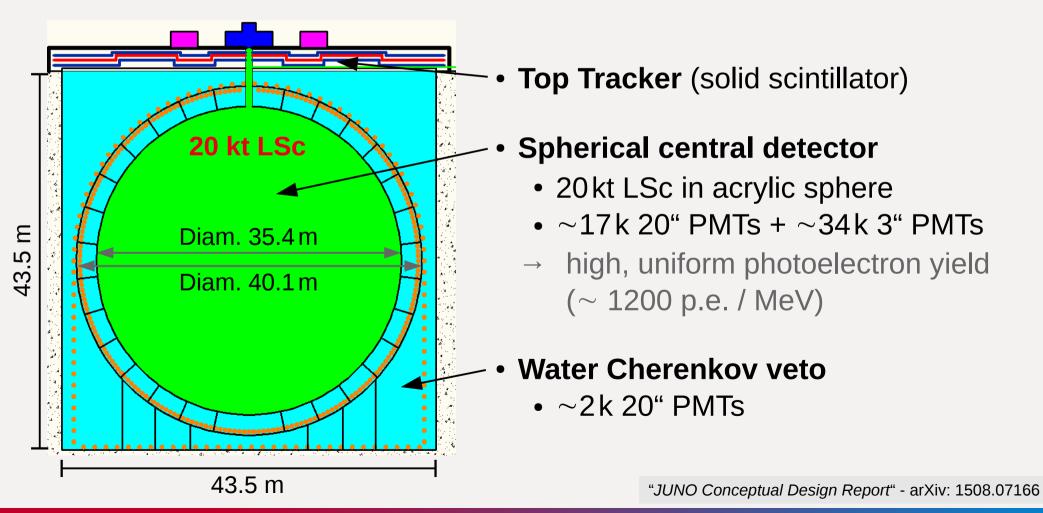


- Main Goal of the
 Jiangmen Underground Neutrino Observatory
- > JUNO Detector Design

Outline

- Neutrino Astrophysics Program
 - Core-collapse Supernova Neutrinos (SN-v) from a burst
 - Diffuse Supernova Neutrino Background (DSNB)
 - Solar Neutrinos (Solar-v)
- Summary & Conclusion

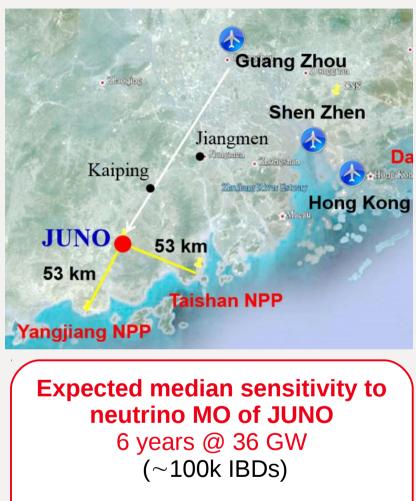
JG U Main Goal of JUNO



- Goal: determine neutrino mass ordering (MO)
- > **Approach:** Investigate oscillatory fine structure in reactor \overline{v}_e event spectrum at a baseline length of ~53km (probe survival probability)
- Requirements: large target mass, low energy threshold, very good energy resolution (~3% @ 1MeV)

"Neutrino physics with JUNO" - J. Phys. G 43 (2016) 030401

JGU JUNO Detector Design


- > JUNO will use 20 kt of liquid scintillator (LSc)
- Primary \overline{v}_e detection channel: $\overline{v}_e + p \rightarrow e^+ + n$ (IBD)
 Signature: prompt e⁺ annihilation; O(ns) + delayed n-capture; O(200 µs)

JG U JUNO Experimental Site

w/o precise external info: $\sim 3\sigma$

w/ precise external info: 3.7-4.4o

- Underground site close to Kaiping in the south of China
- About 700 m overburden
 - → Muon event rate: \sim 3s⁻¹
- > \overline{v}_e source: 2 NPPs at 53 km distance 10 cores with a total of 35.8 GW P_{th}
- JUNO is a funded project
 - construction started 2015
 - > data taking starts \sim 2020

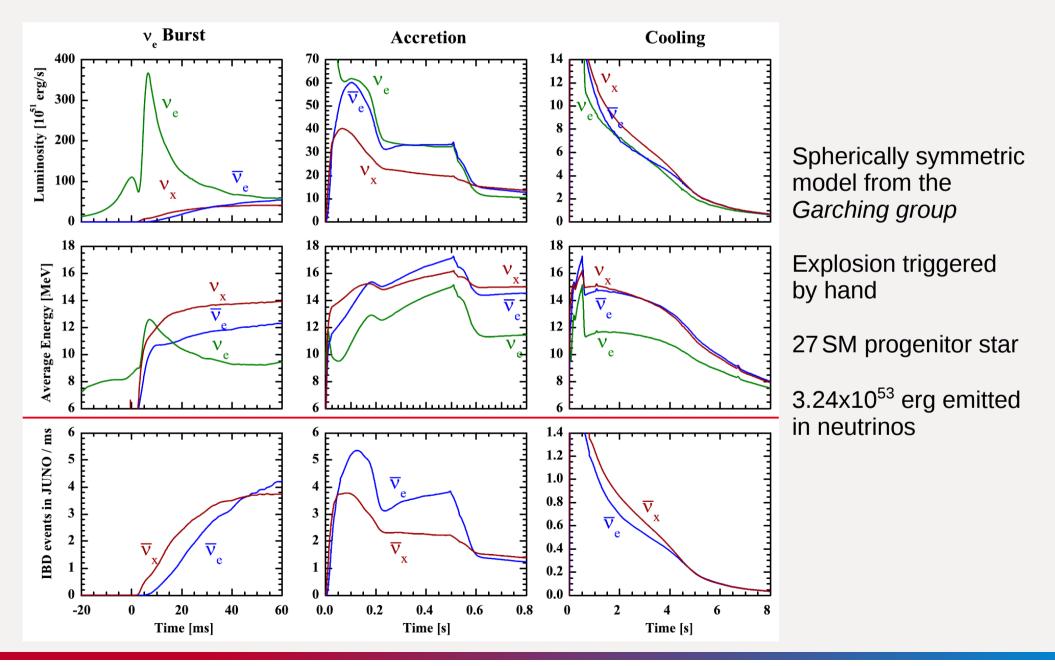
> What else?

- Measure some flavor oscillation parameters with sub-percent level precision
- Measure neutrinos from Earth and extra-terrestrial sources

SN-v measurements with JUNO benefit from

- + very good energy resolution
- + large target mass (20kt LSc)
- + time and flavor information

	Channel	Туре	Even	ts for different $\langle E_{\nu} \rangle$ v	alues
	JUNO		12 MeV	14 MeV	16 MeV
Primary channel —	$\rightarrow \overline{\nu}_{\rm e} + p \rightarrow e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
LSc!	\rightarrow $\nu + p \rightarrow \nu + p$	(NC)	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}
	u + e ightarrow u + e	ES	3.6×10^{2}	3.6×10^{2}	3.6×10^{2}
	$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	1.7×10^2	3.2×10^{2}	5.2×10^{2}
	$ u_{\mathrm{e}} + {}^{12}\mathrm{C} ightarrow e^- + {}^{12}\mathrm{N}$	CC	0.5×10^2	0.9×10^2	1.6×10^{2}
	$\overline{\nu}_{\rm e}$ + $^{12}{\rm C}$ \rightarrow e^+ + $^{12}{\rm B}$	CC	0.6×10^{2}	1.1×10^{2}	1.6×10^{2}

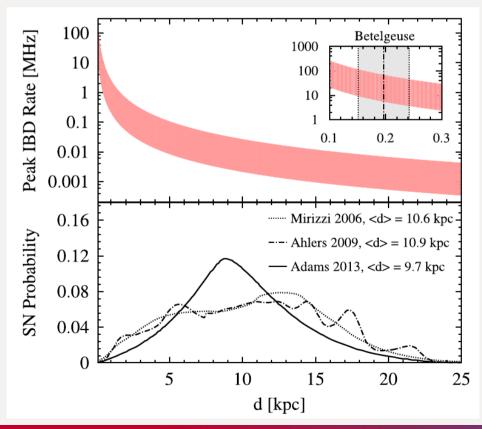

Event counts for a core-collapse SN at a typical distance of 10 kpc. No flavor conversion.

Proton recoil energy threshold for v-p elastic scattering: 0.2 MeV

- > High event rate in 10s burst \rightarrow background no serious concern
- Detailed neutrino "light curve" spectra with high statistics from JUNO will allow to test core-collapse SN models

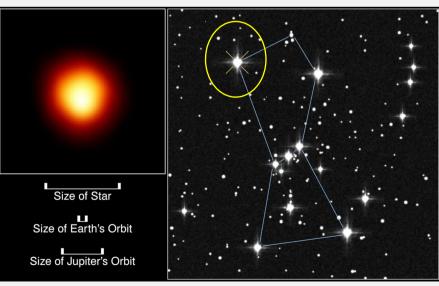
JG U Supernova Neutrino Measurement

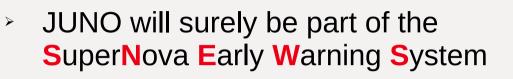
Magellan Workshop @ Hamburg, March 18th 2016


Supernova Neutrino Measurement

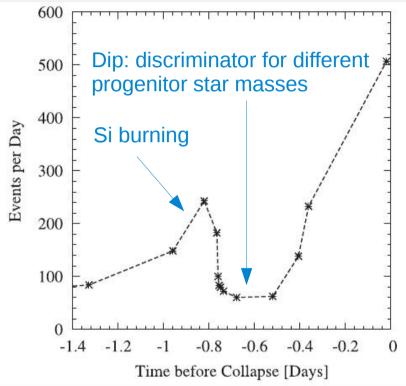
- JUNO will be sensitive only to galactic core-collaps SNe
- Only 1-3 / century expected
 → Don't miss the next one!

IGI

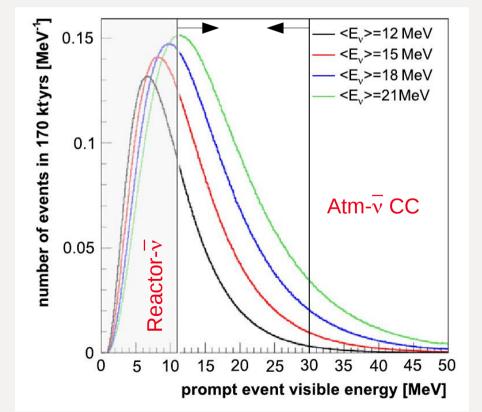

 Make sure the detector is not blinded by a close core-collapse SN



IBD events in JUNO from a core-collapse SN burst at ...


- \sim 750 kpc (Andromeda) : O(1)
- ~50 kpc (LMC; SN 1987A) : O(200)
- $\sim\!10$ kpc (gal. SN mean dist.) $\,$: O(5x10^3)
- \sim 0.2 kpc (Betelgeuse) : O(10⁷)

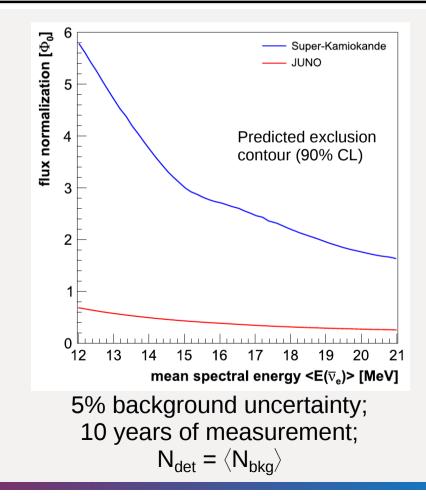
Red Supergiant Betelgeuse (Alpha Orionis)Distance: ~197 pcMass: ~18 SMExpected to end its life as core-collapse SN


- For very close progenitors (Betelgeuse): pre-SN-vs from Si burning as ultimate pre-warning system
- Locate SN (even if its visual appearance is obscured):
 - > Triangulation with multiple detectors
 - Study displacement between prompt and delayed signal vertices of IBD events on a statistical basis
 - → for 5k IBD events: ~9° uncertainty in sky coordinates

Event rate in JUNO for a massive star with 20 SM at Si burning stage; the assumed distance is 0.2 kpc (Betelgeuse)

GU DSNB Measurement

- > **DSNB** : neutrino flux from past core-collapse events in visible universe
- Provides information on star-formation rate, average core-collapse neutrino spectrum, rate of failed SNe
- In JUNO: about 0.7-1.9 IBD events per year in [11; 30] MeV after all cuts
- Most challenging background: atmospheric-v NC interactions
 → neutron knock-out or more complex
 → neutrons produce recoil-protons
- Look for ¹¹C decay
- Performance will largely depend on power of pulse shape discrimination for the prompt signal in the LSc



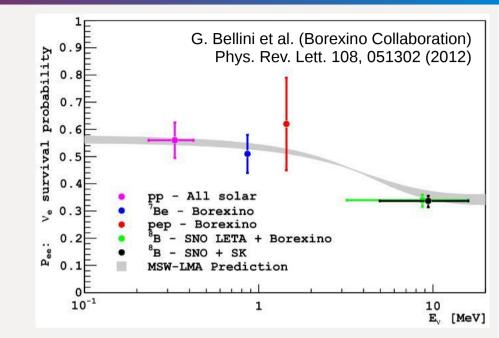
JG U DSNB Measurement

 For favored DSNB parameters: a 3o evidence for the DSNB signal seems within reach after 10 years of measurement

Syst. uncertainty BG	5	5%	20	0%
$\left< E_{\bar{\nu}_{e}} \right> $ JUNO	Rate only	Spectral fit	Rate only	Spectral fit
12 MeV	2.3σ	2.5σ	2.0σ	2.3σ
15 MeV	3.5σ	3.7σ	3.2σ	3.3σ
18 MeV	4.6σ	4.8σ	4.1σ	4.3σ
21 MeV	5.5 σ	5.8 σ	4.9σ	5.1 σ

 If there is no positive DSNB detection after 10 years: significant improvement of current upper limit on DSNB flux

JG U Solar Neutrino Measurement


JUNO

Open issues:

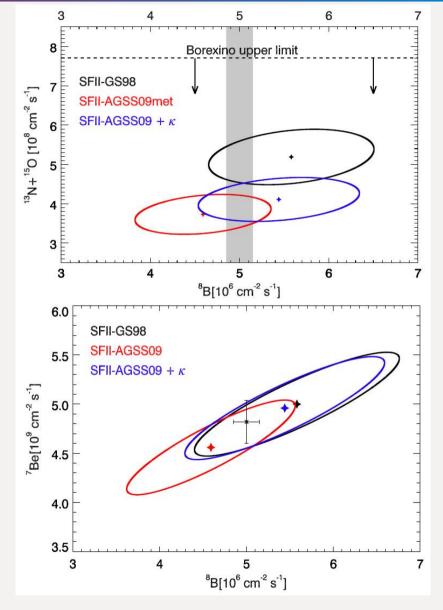
- 1) Solar metallicity problem
- 2) Shape of transition from matterdominated to vaccum-dominated region in solar v_e survival probability

Solar-v measurements with JUNO...

- ... benefit from ...
 - + very good energy resolution
 - + large target mass (20 kt LSc) (fiducial volume → self-shielding)
- ... but need to deal with ...
 - high radiopurity requirements
 - low overburden (cosmogenic background)

So	lar neutrino signal rates (counts/day/kton)	JUNO
pp ν	1378	
7 Be ν	517	
pep ν	28	
$^{8}\text{B} \nu$	4.5	
$^{13}N/^{15}O/^{17}F$	$ \nu$ 7.5/5.4/0.1	

[Flux model BP05(OP) – no energy cuts]


Primary detection channel:
 v – e elastic scattering

JUNO

JG U Solar Neutrino Measurement

- > **JUNO:** focus on ⁷Be- ν and ⁸B- ν fluxes
- CNO-v results alone can still yield model ambiguities, but ⁷Be-v / ⁸B-v measurements with higher statistics can help to break them
- Moreover: probe P_{ee} transition region with high statistics measurement of LE part of ⁸B-v spectrum (~3 MeV)
- Radiopurity and cosmogenic background rejection will be decisive for solar-v program of JUNO (Borexino expertise on board!)

•	•	•
JUNO	Internal radiopurity requin Baseline	rements Ideal
²¹⁰ Pb ⁸⁵ Kr ²³⁸ U ²³² Th ⁴⁰ K ¹⁴ C	$5 \times 10^{-24} (g g^{-1})$ 500 (counts/day/kton) $1 \times 10^{-16} (g g^{-1})$ $1 \times 10^{-16} (g g^{-1})$ $1 \times 10^{-17} (g g^{-1})$ $1 \times 10^{-17} (g g^{-1})$	$\begin{array}{c} 1 \times 10^{-24} \ (\text{g g}^{-1}) \\ 100 \ (\text{counts/day/kton}) \\ 1 \times 10^{-17} \ (\text{g g}^{-1}) \\ 1 \times 10^{-17} \ (\text{g g}^{-1}) \\ 1 \times 10^{-18} \ (\text{g g}^{-1}) \\ 1 \times 10^{-18} \ (\text{g g}^{-1}) \end{array}$

"A special Borexino Event—Borexino Mini-Workshop" by A. M. Serenelli (Gran Sasso, 2014)

- > JUNO aims to determine the neutrino MO by investigating an oscillatory fine structure in the reactor $\overline{\nu_e}$ survival probability at a baseline of 53 km
- > It will feature a 20 kt LSc detector of unprecedented size; the construction began in 2015; data taking will start in \sim 2020
- In case of a galactic core-collapse SN, high event counts in JUNO with time and flavor information will allow to test SN models
- A 3o evidence for the DSNB signal seems within reach after 10 years of measurement; the current upper DSNB flux limit will be significantly improved if no positive DSNB signal is found
- Solar-v program depends on achieved radiopurity and cosmogenic background rejection
- $\>~^7\text{Be-$v$}$ and $^8\text{B-$v$}$ measurements can help to shed light on solar metallicity / opacity problem and solar ν_e survival probability transition region

Thank you for your kind attention!

Magellan Workshop @ Hamburg, March 18th 2016

Further information

Magellan Workshop @ Hamburg, March 18th 2016

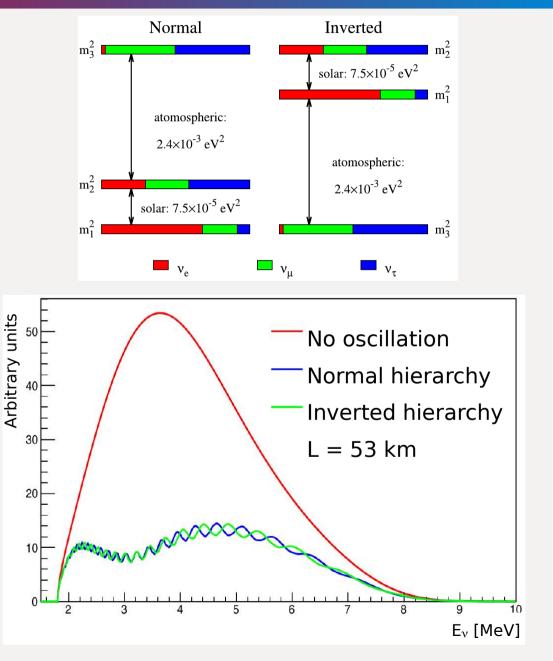
$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

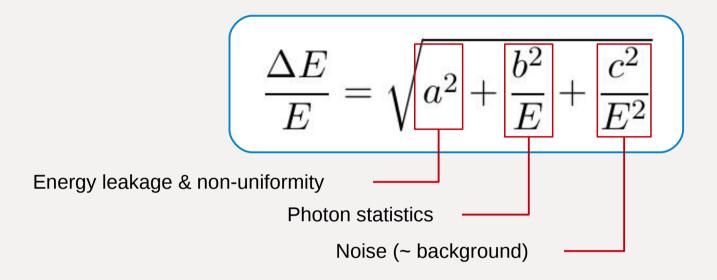
$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E$$


$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

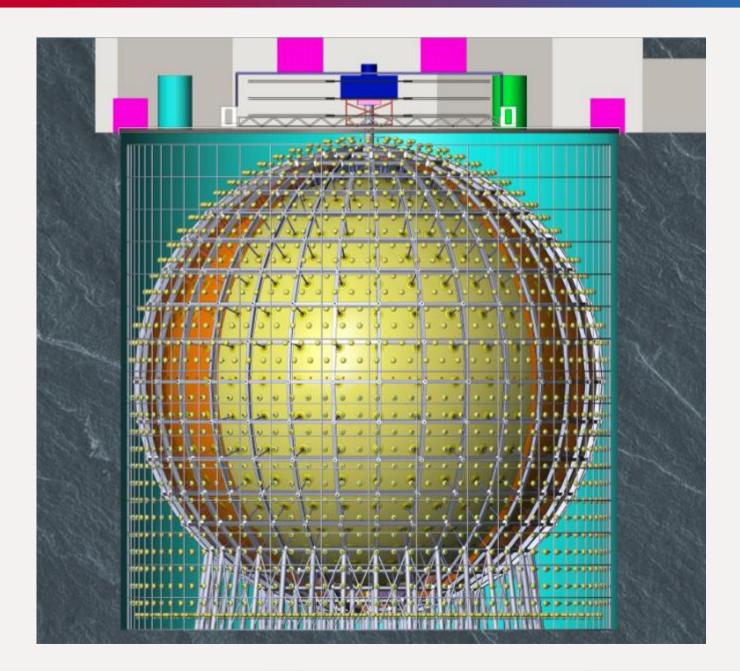
NH : $|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$
IH : $|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$

$$\frac{|\Delta m^2_{21}|}{|\Delta m^2_{32}|} \sim 0.03$$

Precision of $\sin^2 \theta_{12}$, Δm_{21}^2 and $|\Delta m_{ee}^2|$ from the nominal setup to those including additional systematic uncertainties. The systematics are added one by one from left to right.

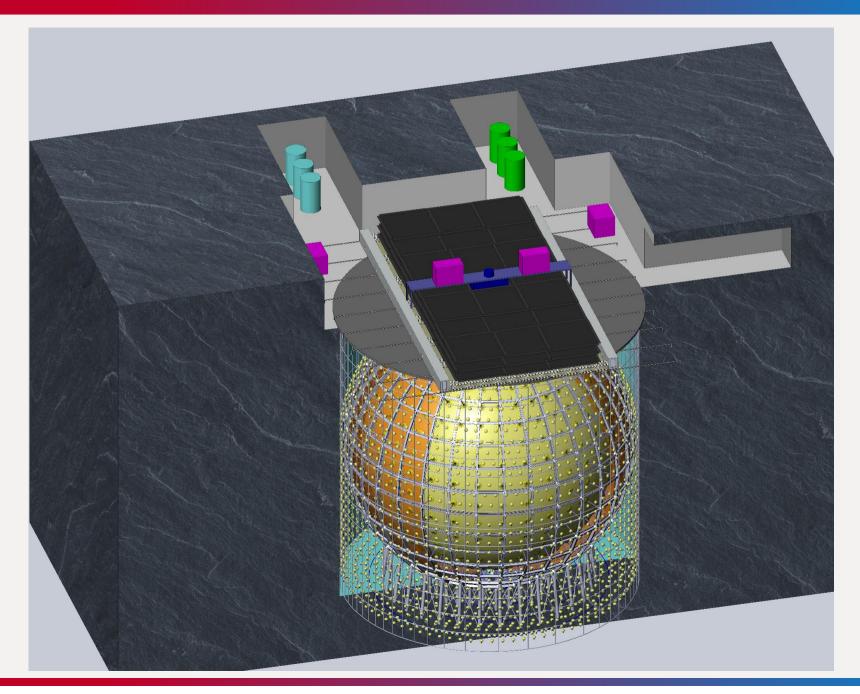

	Nominal	+B2B (1%)	+BG	+EL (1%)	+NL (1%)
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%

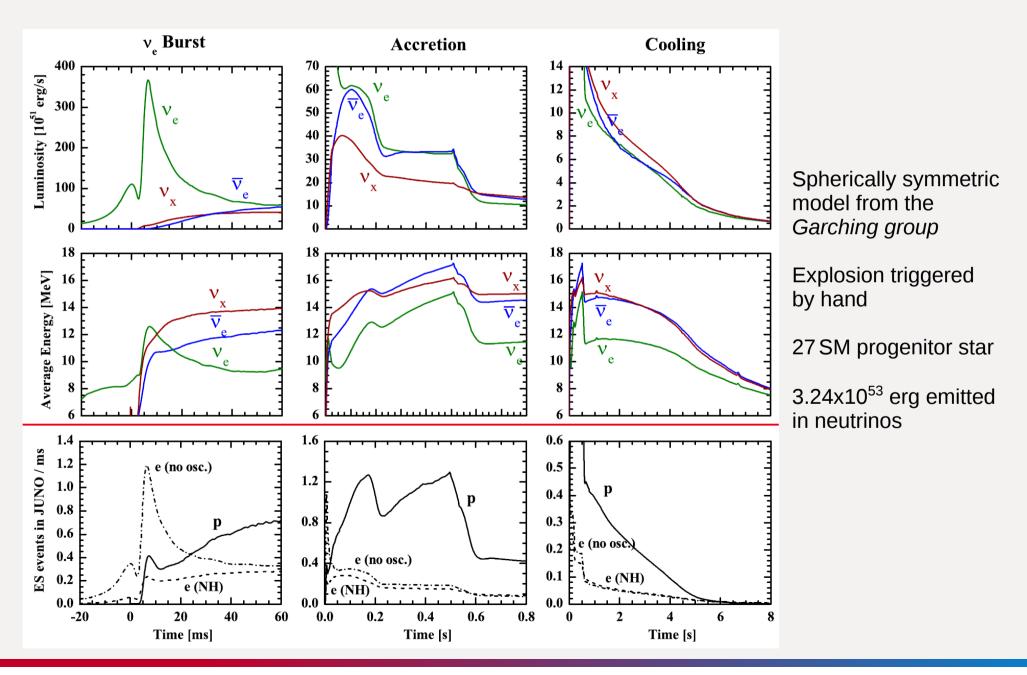
"Neutrino physics with JUNO" - J. Phys. G 43 (2016) 030401


A) High, uniform photoelectron yield (~ 1200 p.e./MeV)

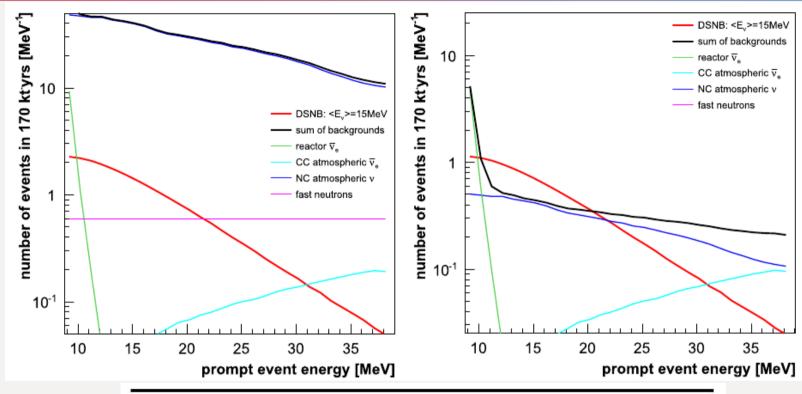
- Spherical detector
- High light yield scintillator + low attenuation (no Gd loading)
- > High photocathode coverage (\sim 77%)
- PMTs with high detection efficiency (~30%)
- **B)** Low noise \rightarrow Clean materials and quiet PMTs

C) Comprehensive calibration program





-


Complete conceptual design; complete civ design & bidding	il	PMT production line manufacturing		Complete civil construction; start detector construction & assembly		Complete detector assembly, installation & LS filling	
2013	2014	2015	2016	2017	2018	2019	~ 2020
	Start civil construction; complete protoyping (PMT & detector) international collaboration established);	Start PMT production; start detector production or bidding		Start LS production		Start data taking

Magellan Workshop @ Hamburg, March 18th 2016

	Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
	Signal	$\left< E_{\nu_{\rm e}} \right> = 12 { m MeV}$	13	$arepsilon_ u=50\%$	7
		$\left\langle E_{\bar{\nu}_{\rm e}} \right\rangle = 15 {\rm MeV}$	23		12
		$\left< E_{ar{ u}_{ m e}} \right> = 18~{ m MeV}$	33		16
		$\left< E_{ar{ u}_{ m e}} \right> = 21~{ m MeV}$	39		19
	Background	reactor $\bar{\nu}_{e}$	0.3	$arepsilon_ u=50\%$	0.13
		atm. CC	1.3	$arepsilon_ u=50\%$	0.7
		atm. NC	6×10^2	$\varepsilon_{ m NC} = 1.1\%$	6.2
10 years measurement		fast neutrons	11	$\varepsilon_{\rm FN}=1.3\%$	0.14
17 kt fiducial mass		Σ			7.1

Magellan Workshop @ Hamburg, March 18th 2016

Baseline

JUNO	Internal radiopurity requin Baseline	ements Ideal
²¹⁰ Pb ⁸⁵ Kr ²³⁸ U ²³² Th ⁴⁰ K ¹⁴ C	$5 \times 10^{-24} (g g^{-1})$ $500 (counts/day/kton)$ $1 \times 10^{-16} (g g^{-1})$ $1 \times 10^{-16} (g g^{-1})$ $1 \times 10^{-17} (g g^{-1})$ $1 \times 10^{-17} (g g^{-1})$	$\begin{array}{c} 1 \times 10^{-24} \ (\text{g g}^{-1}) \\ 100 \ (\text{counts/day/kton}) \\ 1 \times 10^{-17} \ (\text{g g}^{-1}) \\ 1 \times 10^{-17} \ (\text{g g}^{-1}) \\ 1 \times 10^{-18} \ (\text{g g}^{-1}) \\ 1 \times 10^{-18} \ (\text{g g}^{-1}) \end{array}$

	Cosmogenic background rates (counts/day/kton)
C	1860
С	35