

The atmospheric muon charge ratio: a probe to constrain the atmospheric $v_{\mu}/\overline{v}_{\mu}$ ratio

Nicoletta Mauri INFN Sezione di Bologna

Magellan Workshop – Connecting Neutrino Physics and Astronomy DESY, Hamburg, March 17th, 2016

The atmospheric muon charge ratio

- The atmospheric muon charge ratio $R_{\mu} \equiv N_{\mu^+}/N_{\mu^-}$ is being studied and measured since many decades
 - Depends on the chemical composition and energy spectrum of the primary cosmic rays
 - Depends on the hadronic interaction features
 - At high energy, depends on the prompt component
- It provides the possibility to check HE hadronic interaction models (E>ITeV) in the fragmentation region, in a phase space complementary to the collider's one
- Since atmospheric muons are kinematically related to atmospheric neutrinos (same sources), R_{μ} provides a benchmark for **atmospheric v flux computations** (e.g. background for neutrino telescopes)

Inclusive production of TeV muons (and neutrinos)

High $x_F = E_{lepton} / E_{nucleon}$ Forward Region hadronic interaction: multiparticle production $\leftarrow \rightarrow$ High pseudorapidity $\sigma(A,E)$, $dN/dx(A,E) \rightarrow$ extensive air shower **Primary C.R.** Phase space inaccessible to proton/nucleus: A, E, isotropic accelerators (ordinary) meson decay: $dN_{\mu}/d \cos\theta \sim 1/\cos\theta$ short-lifetime transverse size of bundle meson production $\propto P_T(A,E)$ and prompt decay (e.g. charmed mesons) ν_{μ} **Isotropic angular** distribution **TeV** muon propagation in the rock: radiative processes and fluctuations detection: $N_{\mu}(A,E)$, dN_{μ}/dr

Inclusive production of TeV muons (and neutrinos)

Conventional muon and muon neutrino yields:

$$\Phi_{\nu}(E) = \frac{\phi_N(E)}{1 - Z_{NN}} \left(\frac{\mathcal{A}_{\pi\nu}}{1 + \mathcal{B}_{\pi\nu}E\cos\theta/\varepsilon_{\pi}} + \frac{\mathcal{A}_{K\nu}}{1 + \mathcal{B}_{K\nu}E\cos\theta/\varepsilon_K} \right)$$

The fluxes are similar, but the meson parents contribute differently to μ and ν_{μ}

Kaon decays are the <u>dominant</u> contribution to the muon neutrino flux

Key features of R_{μ}

Naïf prediction (Gaisser, Cambridge University Press)

- Assume only primary protons with a spectrum $dN/dE = N_0 E^{-(1+\gamma)}$
- Assume only pions and neglect muon decays (HE limit)
- Consider the inclusive cross-section for pions

Assuming Feynman scaling, the muon charge ratio prediction:

where
$$Z_{ij}$$
:

$$R_{\mu} = \frac{\mu^{+}(E_{\mu})}{\mu^{-}(E_{\mu})} = \frac{\pi^{+}(E_{\pi})}{\pi^{-}(E_{\pi})} = \frac{Z_{p\pi^{+}}}{Z_{p\pi^{-}}}$$

$$Z_{p\pi^{\pm}} = \int_{0}^{1} f_{p\pi}^{\pm}(x) x^{\gamma-} dx$$
Spectrum weighted moments (SVVM)

air

p (primary)

Key features of R_{μ} (cont'd)

Elaborating the minimal model:

• Introducing the neutron component in the primary flux (in heavy nuclei) and considering the isospin symmetries: $Z_{p\pi^+} = Z_{n\pi^-}, \quad Z_{p\pi^-} = Z_{n\pi^+}$

Interpretation of the prominent features:

The result is valid only in the fragmentation region, enhanced in the SWM
But the steeply falling primary spectrum (γ ~ 1.7) in the SWM suppresses the contribution of the central region → scaling holds
Each pion is likely to have an energy close to the one of the projectile (primary CR proton) and comes from its fragmentation (valence quarks)

Feynman scaling validity

- \rightarrow positive charge ($R_{\mu} > I$)
- <u> R_{μ} does not depend on E_{μ} </u> (or E_{π}) nor on the target nature
 - $\underline{R_{\mu}}$ depends on the primary composition through δ_0

Kaon contribution

- At higher energy (>100 GeV) the contribution of K becomes important
- In general, the contribution of each component to the muon flux $N_{par} = (\pi, K, charmed, etc.)$ depends on the relative contribution of decays and interaction probabilities:

$$\Phi_{\mu} = \frac{\Phi_{N}(\mathbf{E}_{\mu})}{1 - Z_{NN}} \sum_{i=1}^{N_{par}} \frac{a_{i} Z_{Ni}}{1 + b_{i} \mathbf{E}_{\mu} / \varepsilon_{i}(\theta)}$$

• For kaons:

$$\mathbf{Z}_{\mathbf{p}\mathbf{K}^{+}} >> \mathbf{Z}_{\mathbf{n}\mathbf{K}^{-}} \approx \mathbf{Z}_{\mathbf{p}\mathbf{K}^{-}}$$

because the reaction

p Air \rightarrow K⁺ Λ N + anything

is favoured (associated production)

→ This leads to a larger R_{μ} ratio at high energy

Parameterization of the charge ratio

• Considering the general form for the muon flux

$$\Phi_{\mu^{\pm}} = \frac{\Phi_{N}(\mathbf{E}_{\mu})}{1 - Z_{NN}} \sum_{i=1}^{N_{par}} \frac{a_{i} Z_{Ni}^{\pm}}{1 + b_{i} \mathbf{E}_{\mu} \cos \theta^{*} / \varepsilon_{i}(0)}$$

where we have made explicit the $\varepsilon_i(\theta)$ dependence on θ

$$\varepsilon_i(\theta) = \varepsilon_i(0) / \cos \theta^*$$

- The correct variable to describe the evolution of R_{μ} is therefore $E_{\mu}cos\theta^{*}$ (assuming a constant primary composition)
- The R_{μ} evolution as a function of $E_{\mu}cos\theta^*$ spans over the different sources $R_{\mu} = w_{\pi}R_{\mu}^{\pi} + w_{K}R_{\mu}^{K} + w_{charm}R_{\mu}^{charm} + ...$ POWERFUL HANDLE TO DISCRIMINATE MODELS

Analysis of experimental results in terms of $\textbf{E}_{\mu}~\textbf{cos}\theta^{*}$

 $\theta^* \equiv \text{zenith angle}$

at the production point

H

Earth

R_{μ} measurements with $E_{\mu}cos\theta^* \sim 1 \text{ TeV}$

Experiments with magnetic field:

- <u>Utah:</u>
 G. K. Ashley et al., Phys. Rev. D12 (1975) 20
- <u>CMS:</u> (shallow depth)
 CMS Collaboration, Phys. Lett. B692 (2010) 83
- <u>MINOS:</u>

P.Adamson et al., Phys. Rev. D76 (2007) 052003 + Phys. Rev. D83 (2011) 032011

• <u>OPERA:</u>

N.Agafonova et al., Eur. Phys. J. C67 (2010) 25 + Eur. Phys. J. C74 (2014) 2933

Experiments without magnetic field:

- Kamiokande-II
 - M. Yamada et al., Phys. Rev. D44 (1991) 617
 - Underground Cherenkov detector at Kamioka ~2700 m.w.e., delayed events on stopping muons, one bin with $0^{\circ} < \theta < 90^{\circ}$
- <u>LVD:</u>

N.Agafonova et al., Proc. 31th ICRC, ŁÓDZ 2009 + arXiv:1311.6995

- Underground at LNGS, average overburden ~3800 m.w.e., scintillators, delayed events on stopping muons, one bin with θ < 15°

OPERA detector

Target + magnetic spectrometer (1.53 T) at LNGS, average overburden ~3800 m.w.e., drift tubes + RPC + scintillators, detector angular window $0^{\circ} < \theta < 90^{\circ}$

Charge and momentum reconstruction

Combination of the two data sets with opposite magnet polarities
 disposing of the misalignment systematics (~0.1 mrad)

Results: underground muon charge ratio

Full OPERA data set (2008-2012): combining data taken with opposite magnet polarities

- R_{μ} computed separately for single and multiple muon events
- Multiple muons: compute R_{μ} when the 3D multiplicity is > 1, independently on the number of measured charges in the event

primary features extracted from a full MC

Full OPERA data (5-year statistics)

Νμ	<a< b="">></a<>	<e a="">_{primary} [TeV]</e>	H fraction	N _p /N _n	R_{μ}^{unf}
=	3.35 ± 0.09	19.4 ± 0.1	0.667 ± 0.007	4.99 ± 0.05	1.377 ± 0.006
>	8.5 ± 0.3	77 ± I	0.352 ± 0.012	2.09 ± 0.07	1.098 ± 0.023

"dilution" of R_{μ} for multiple muon events

convolution of two effects:

larger n/p ratio in the all-nucleon spectrum \otimes different x_{F} region

Charge ratio of multiple muon events

• The smaller value of the charge ratio of multiple muons is due to the convolution of two effects:

\textbf{R}_{μ} as a function of $\textbf{E}_{\mu}\, \textbf{cos}\,\, \theta^{*}$

Bin	$\mathscr{E}_{\mu}\cos\theta^{*}$	$(\mathscr{E}_{\mu}\cos\theta^{*})_{MPV}$	$\langle \theta \rangle$	R_{μ}	$\delta R_{\mu}(stat.)$	$\delta R_{\mu}(syst.)$
			(ueg)			/0
1	562 - 1122	1091	47.5	1.357	0.009	1.8
2	1122 - 2239	1563	42.8	1.388	0.008	0.1
3	2239 - 4467	2972	46.9	1.389	0.028	2.1
4	4467 - 8913	7586	60.0	1.40	0.16	7.1

\textbf{R}_{μ} as a function of $\textbf{E}_{\mu}\, \textbf{cos}\,\, \theta^{*}$ and δ_{0}

Taking into account an explicit dependence on $\delta_0 = (p - n)/(p + n)$: (Gaisser, Astropart. Phys. 35 (2012) 801)

$$R_{\mu} = \left[\frac{f_{\pi^{+}}}{1 + B_{\pi}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{\pi}} + \frac{\frac{1}{2}(1 + \alpha_{K}\beta\delta_{0}A_{K}/A_{\pi})}{1 + B_{K}^{+}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{K}}\right] \times \left[\frac{1 - f_{\pi^{+}}}{1 + B_{\pi}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{\pi}} + \frac{(Z_{NK^{-}}/Z_{NK})A_{K}/A_{\pi}}{1 + B_{K}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{K}}\right]^{-1}$$

$$\delta_0$$
 depends on $E_{primary}$ /nucleon \approx 10 E_{μ} (not on $E_{\mu} \cos \theta^*$!)

		Parameter	Value	Ref.
-> Different des endensions	Parameters depending on hadronic interactions			
fit in 2-dimensions (E_{μ} , cos θ^*) 20 bins: 5 energy bins × 4 angular bins		$Z_{p\pi^+}$	0.046	[2]
		$Z_{p\pi^-}$	0.033	[2]
		Z_{pK^-}	0.0028	[2]
		β	0.909	[22]
	ulai Dilis	Parameters depending on primary spectral index		
		A_{π}	$0.675 Z_{N\pi}$	[7]
	A_K	$0.246 Z_{NK}$	[7]	
Fixed parameters (see ta	B_{π}	1.061	[7]	
Tixed parameters (see table)		B _K	1.126	[7]
Informed parameters. 7	Parameters depending on primary composition			
interred parameters. \mathbb{Z}_{pK+} and \mathbb{O}_0		b	-0.035	[2]
		Critical energies		
		ε_{π}	115 GeV	[22]
17 Mar 2016 N.	Mauri, Magellan Workshop	\mathcal{E}_K	850 GeV	[22]

The atmospheric $v_{\mu}/\overline{v}_{\mu}$ ratio

Taking into account the Z-factor measured by OPERA

 $δ_0$ (E_N ≈ 20 TeV/n)= 0.61 ± 0.02 Z_{pK+} = 0.0086 ± 0.0004

Expected ratio of atmospheric muon neutrinos: from I.5 at low energy to ~2.3 above a TeV

3

T.K. Gaisser, EPJ Web Conf. 99 (2015) 05002

Conclusions

- The atmospheric muon charge ratio $R_{\mu}\, provides\, relevant\,$ information for both astro- and particle physics
- Above ~100 GeV up to ~TeV: rise of R_{μ} vs E_{μ} cos θ^* \rightarrow increasing kaon contribution
- R_{μ} measurements in the TeV range allow to constrain kaon production in a phase-space inaccessible to accelerators
- The OPERA measurement in the highest energy region:
 - > R_{μ} for single muons compatible with the expectation from a simple π -K model
 - > No significant contribution of the prompt component up to $E_{\mu} \cos \theta^* \sim 10 \text{ TeV}$
 - Extracted relevant parameters on the primary composition (δ_0) and the associated kaon production in the forward fragmentation region (Z_{pK+} moment)
 - > Validity of Feynman scaling in the fragmentation region up to $E_{\mu} \sim 20 \text{ TeV}$, corresponding to primary energy/nucleon $E_N \sim 200 \text{ TeV}$

Thank you!

Dependencies of R₁₁

- R₁₁ exhibits a zenith dependence if: •
 - Muon contributions from different sources with different R_{μ} a)
 - At least one source has a zenith dependence (e.g. π and K due their relatively long b) lifetimes)

1.8

2105

- In the past several authors applied corrections to convert inclined to vertical R_{μ} ۲ measurements
- This procedure has a limit: it assumes no other sources apart from π and K and • it assumes $Z_{p\pi}$ and Z_{pK} are known
- on surface 1.7 The projection on the vertical via 1.6 $E_{\mu}\cos\theta$ is safer \rightarrow 1.5 capability to explore new ****** 1.4 (isotropic) components and to 1.3 derive $Z_{p\pi}$ and Z_{pK} from data 1.2 1.1⊟ Vertical ······ Horizontal 0.9 N. Mauri, Magellan Workshop₁₀² 17 Mar 2016 10⁴ 10³ MUON MOMENTUM (GeV/c)

Phase space of atmospheric μ,ν_{μ}

conventional

conventional + prompt

Cosmic event reconstruction in OPERA

Multiple muon events well reconstructed

-15

-10

-5

0

5

10

Azimuth(true) - Azimuth(rec)

15

5

10

Zenith(true)-Zenith(rec)

17 Mar 2016

PT system in the spectrometer

6 PT stations for each spectrometer: 2 upstream of the first magnet arm, 2 in the middle, 2 downstream of the second magnet arm

Top view of the OPERA spectrometer

Systematic uncertainty on R_{μ}

Two main sources of systematic uncertainties:

- \rightarrow <u>Misalignment</u>: combination procedure
- Estimate of the residual systematic uncertainty related to the combination procedure: difference between the charge ratio R_{μ} for muons coming from opposite directions: $\delta R_{\mu} = |R_{\mu} (up) R_{\mu} (down)|$
- \rightarrow <u>Charge misidentification</u> η from experimental data
- Estimate $\delta \eta = \eta_{data} \eta_{MC}$ for a subsample of events crossing both arms of a spectrometer: computation of the probability *p* of reconstructing opposite charges

Total systematic uncertainty for single μ : $\delta R_{\mu}^{unf}(syst) = +0.007, -0.001$

Total systematic uncertainty for multiple μ : $\delta R_{\mu}^{unf}(syst) = +0.015, -0.013$

R_{μ} as a function of p_{μ}

- R_{μ} (single muons)
- Evolution with p_{μ} is compatible both with a constant and with a logarithmic energy increase, with a 2.4 σ preference for the latter

