Diffuse neutrinos from extragalactic supernova remnants: dominating the 100 TeV IceCube flux

Ignacio Izaguirre

DESY Hamburg, 18th March 2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

1 Introduction

- Neutrinos as cosmic messengers
- The IceCube experiment

2 Diffuse neutrino flux

- Cosmic neutrinos: primary proton sources
 Supernova remnants (SNRs) and Hypernova remnants (HNRs)
- Different types of galaxies
 - Pion production efficiency (η_{π})
- Break on the spectrum

3 γ ray diffuse flux

4 Conclusions

Neutrinos as cosmic messengers The IceCube experiment

Neutrinos as cosmic messengers

DESY Hamburg, 18th March 2016 3 / 17

< □ > < 同 >

돌▶ ◀ 돌▶ Ξ|= ∽९...

Introduction

Diffuse neutrino flux γ ray diffuse flux Conclusions

Neutrinos as cosmic messengers The IceCube experiment

IceCube results (arXiv:1405.5303)

-

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Bottom-up approach

• The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants

- 4 同 2 4 日 2 4 日 2 日 2 9 9 9 9

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnant (SNR)
 - Hypernova remmant (HNR)

- 4 母 ト 4 ヨ ト ヨ ヨ - の Q ()

 $\begin{array}{c} \text{Introduction}\\ \textbf{Diffuse neutrino flux}\\ \gamma \text{ ray diffuse flux}\\ \text{Conclusions} \end{array}$

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnant (SNR)
 - Hypernova remmant (HNR)
- We will consider two type of host galaxies: Normal star forming galaxies (NSFG) and Starburst galaxies (SBG)

- 4 母 ト 4 ヨ ト ヨ ヨ - の Q ()

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Pionic ν production

Introduction Diffuse neutrino flux γ ray diffuse flux Conclusions

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Stellar Remnants

Supernova Remmants (SNRs)

- Stars with $M > 8 M_{\odot}$
- $E_{p,max} \propto BR_s \beta_{ej} \simeq (10^3 10^4) ~TeV$
- Luminosities of $\simeq (10^{50} 10^{51}) erg s^{-1}$
- The number of SN in a galaxy follows the SFR

Hypernova Remmants (HNRs)

- Subset of SN ($\simeq 1$ %) with extreme energetic ejecta
- Stars with $M > (50 80) M_{\odot}$, low metallicity (population II)
- $E_{p,max} \simeq (10^4 10^5) ~TeV$
- Luminosities of $\simeq (10^{51} 10^{52}) erg s^{-1}$

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Diffuse cosmic neutrino flux

The contribution form each stellar remnant from a particular type of host galaxy is given by ,

$$\frac{dN(E_{\nu})}{dE_{\nu}} = \int_{E_{\nu}}^{\infty} \eta_{\pi}(E_{\rho}) J_{\rho}(E_{\rho}) F_{\nu}(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}) \frac{dE_{\rho}}{E_{\rho}},$$

∃ ► < ∃ ► .</p>

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Diffuse cosmic neutrino flux

The contribution form each stellar remnant from a particular type of host galaxy is given by ,

$$\frac{dN(E_{\nu})}{dE_{\nu}} = \int_{E_{\nu}}^{\infty} \eta_{\pi}(E_{\rho}) J_{\rho}(E_{\rho}) F_{\nu}(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}) \frac{dE_{\rho}}{E_{\rho}},$$

• $J_{
ho}(E_{
ho})
ightarrow$ Primary proton spectrum

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Diffuse cosmic neutrino flux

The contribution form each stellar remnant from a particular type of host galaxy is given by ,

$$\frac{dN(E_{\nu})}{dE_{\nu}} = \int_{E_{\nu}}^{\infty} \eta_{\pi}(E_{\rho}) J_{\rho}(E_{\rho}) F_{\nu}(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}) \frac{dE_{\rho}}{E_{\rho}},$$

• $J_p(E_p) \rightarrow$ Primary proton spectrum

• $F_{\nu}(\frac{E_{\nu}}{E_{p}}, E_{p}) \rightarrow$ Secondary neutrino spectrum

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

Diffuse cosmic neutrino flux

The contribution form each stellar remnant from a particular type of host galaxy is given by ,

$$\frac{dN(E_{\nu})}{dE_{\nu}} = \int_{E_{\nu}}^{\infty} \eta_{\pi}(E_{\rho}) J_{\rho}(E_{\rho}) F_{\nu}(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}) \frac{dE_{\rho}}{E_{\rho}},$$

- $J_{\rho}(E_{\rho}) \rightarrow$ Primary proton spectrum
- $F_{\nu}(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}) \rightarrow$ Secondary neutrino spectrum
- $\eta_{\pi}(E_p) \rightarrow$ Efficiency of the pion production

Introduction Diffuse neutrino flux γ ray diffuse flux Conclusions

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

R_{SF}: Different types of galaxies (arXiv:1108.0933)

--

< 一司

Introduction Diffuse neutrino flux γ ray diffuse flux Conclusions

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

η_{π} :SBGs vs NSFGs

Figure: ν 's production efficiency (η_{π}) as a function of the proton energy

→ Ξ → ...

< □ > < 同 >

EL OQO

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

SNR and HNR in NSFG's+SBG's neutrino flux (arXiv:1501.02615)

1= 9QQ

Cosmic neutrinos: primary proton sources Different types of galaxies Break on the spectrum

SNR and HNR in NSFG's+SBG's neutrino flux (arXiv:1501.02615)

1= 9QQ

 $\begin{array}{c} \text{Introduction}\\ \text{Diffuse neutrino flux}\\ \gamma \text{ ray diffuse flux}\\ \text{Conclusions} \end{array}$

γ ray diffuse flux

• The same hadronic interactions responsible for the ν production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^{0}$$

• $\pi^{0} \longrightarrow \gamma\gamma$

글 🖌 🖌 글 🛌

ELE DQA

 $\begin{array}{c} \text{Introduction}\\ \text{Diffuse neutrino flux}\\ \gamma \text{ ray diffuse flux}\\ \text{Conclusions} \end{array}$

γ ray diffuse flux

• The same hadronic interactions responsible for the ν production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

• $\pi^0 \longrightarrow \gamma\gamma$

 $\bullet\,$ However, the γ ray flux will cascade to lower energies

3 = 1 - 1 A A

 $\begin{array}{c} \text{Introduction}\\ \text{Diffuse neutrino flux}\\ \gamma \text{ ray diffuse flux}\\ \text{Conclusions} \end{array}$

γ ray diffuse flux

• The same hadronic interactions responsible for the ν production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

•
$$\pi^0 \longrightarrow \gamma \gamma$$

- $\bullet\,$ However, the γ ray flux will cascade to lower energies
 - $\gamma\gamma$ interactions with background light (EBL and CMB) \rightarrow production of e^-/e^+ pairs \rightarrow

3 = 1 - 1 A A

γ ray diffuse flux

• The same hadronic interactions responsible for the ν production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

•
$$\pi^0 \longrightarrow \gamma \gamma$$

- $\bullet\,$ However, the γ ray flux will cascade to lower energies
 - $\gamma\gamma$ interactions with background light (EBL and CMB) \rightarrow production of e^-/e^+ pairs \rightarrow
 - e^-/e^+ pairs interact again via the inverse compton mechanism $\rightarrow \gamma\text{-ray}$

∃ ► ★ ∃ ► ↓ ∃ | = √Q ∩

γ ray diffuse flux

• The same hadronic interactions responsible for the ν production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

•
$$\pi^0 \longrightarrow \gamma \gamma$$

- $\bullet\,$ However, the γ ray flux will cascade to lower energies
 - $\gamma\gamma$ interactions with background light (EBL and CMB) \rightarrow production of e^-/e^+ pairs \rightarrow
 - e^-/e^+ pairs interact again via the inverse compton mechanism $\rightarrow \gamma\text{-ray}$
- This γ ray flux ought not exceed the constraints of Fermi-LAT.

ヨト イヨト ヨヨ わえつ

γ ray diffuse flux (Work in Progress)

1.2

γ ray diffuse flux (Work in Progress)

• Accounting for the internal absorption in the SBGs and the uncertainties in the intergalactic γ ray absorption releases the tension

ヨト イヨト ヨヨ のへの

γ ray diffuse flux (Work in Progress)

• Accounting for the internal absorption in the SBGs and the uncertainties in the intergalactic γ ray absorption releases the tension

Conclusions

- Cosmic ν 's are very useful to study the CR's accelerators in the *multimessenger approach*
- Diffuse neutrino flux might have a (dominant) stellar remnant origin
 - SBG's are very efficient ν producers
 - SNRs-HNRs in NSFGs-SBGs are plausible candidates
 - \blacktriangleright The SNR-HNR in NSFGs-SBGs ν dominated flux scenario will result in a break on the spectrum
- We (desperately) need more events!
- Intragalactic absorption make the associated γ ray diffused flux compatible with current bounds (WIP)

Thank you for your attention

Back up slides

γ ray diffuse flux (Work in Progress)

CR Spectrum

三日 のへの

・ロン ・部 と ・ ヨ と ・ ヨ と

R_{SF} as a function of z

-

▲ ∃ ► ■ |= √Q ∩

Absorption optical depth as a function of z (arXiv:0905.1115)

Figure: Plot of $\tau_{\gamma\gamma} = 1$ for several EBL models as a function of redshift.

-

• Differences between **NSFGs** and **SBGs**

Туре	NSFGs	SBGs
Proton number density n (cm ³)	10	10 ²
Diffusion coefficient D_0 (cm ² s ⁻¹)	10 ²⁷	10 ²⁸
Stellar wind velocity V_w $(km \ s^{-1})$	500	1500
Scale high <i>h</i> (kpc)	0.5	1

NSFGs (f.e. Milky Way)

- $n_p = 10 \text{cm}^3$
- Galaxies with a SFR (4)
- $V_w~(\simeq 500~{\rm km s^{-1}})$
- scale high $h \simeq 0.5$ (kpc)

▲ Ξ ► Ξ Ξ = 𝔄 𝔄 𝔄

- Dense galaxies $(n = 10^2 \text{cm}^3)$
- High $V_w~(\simeq 1500~{
 m km s^{-1}})$
- scale high $h \simeq 1$ (kpc)
- Relative rate of SBGs ightarrow (10-20)% of the NSFGs

Diffused ν flux

• The observed diffuse flux of neutrinos from a particular stellar remnant will have contributions from different redshifts:

$$\frac{dN(E_{\nu}^{ob})}{dE_{\nu}^{ob}} = \frac{c}{4\pi H_0} \int_0^{z_{max}} \frac{dN(E_{\nu})}{dE_{\nu}} \frac{R_{SR}(z) dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\lambda}}$$

3 = 1 - 1 A A

Diffused ν flux

 The observed diffuse flux of neutrinos from a particular stellar remnant will have contributions from different redshifts:

$$\frac{dN(E_{\nu}^{ob})}{dE_{\nu}^{ob}} = \frac{c}{4\pi H_0} \int_0^{z_{max}} \frac{dN(E_{\nu})}{dE_{\nu}} \frac{R_{SR}(z) dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\lambda}}$$

- Biggest uncertainties:
 - The $E_{p,max}$ will range between $(10^3 10^4)$ and $(10^4 10^5)$ TeV for SNRs and HNRs, respectively

Diffused ν flux

 The observed diffuse flux of neutrinos from a particular stellar remnant will have contributions from different redshifts:

$$\frac{dN(E_{\nu}^{ob})}{dE_{\nu}^{ob}} = \frac{c}{4\pi H_0} \int_0^{z_{max}} \frac{dN(E_{\nu})}{dE_{\nu}} \frac{R_{SR}(z) dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\lambda}}$$

- Biggest uncertainties:
 - The $E_{p,max}$ will range between $(10^3 10^4)$ and $(10^4 10^5)$ TeV for SNRs and HNRs, respectively
 - The f_{SBG}/f_{NSFR} will range between (0.1-0.2)

HNRs in SBG neutrino flux (arXiv: 1310.1362)

-

Fermi γ ray flux

313 9QQ

< ロ > < 同 > < 回 > < 回 > :