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Neutrinos as cosmic messengers
The IceCube experiment

IceCube results (arXiv:1405.5303)
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Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:

Supernova remnant (SNR)
Hypernova remmant (HNR)

We will consider two type of host galaxies: Normal star
forming galaxies (NSFG) and Starburst galaxies (SBG)
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Stellar Remnants

Supernova Remmants (SNRs)

Stars with M > 8M�

Ep,max ∝ BRsβej w
(103 − 104) TeV

Luminosities of
' (1050 − 1051)erg s−1

The number of SN in a
galaxy follows the SFR

Hypernova Remmants (HNRs)

Subset of SN (' 1 %) with
extreme energetic ejecta

Stars with
M > (50− 80)M�, low
metallicity (population II)

Ep,max w (104 − 105) TeV

Luminosities of
' (1051 − 1052)erg s−1
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Diffuse cosmic neutrino flux

The contribution form each stellar remnant from a particular type
of host galaxy is given by ,

dN(Eν)

dEν
=

∫ ∞
Eν

ηπ(Ep)Jp(Ep)Fν(
Eν
Ep
,Ep)

dEp

Ep
,

Jp(Ep) → Primary proton spectrum

Fν(Eν
Ep
,Ep) → Secondary neutrino spectrum

ηπ(Ep) → Efficiency of the pion production
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ηπ:SBGs vs NSFGs
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Figure: ν’s production efficiency (ηπ) as a function of the proton energy
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SNR and HNR in NSFG’s+SBG’s neutrino flux
(arXiv:1501.02615)
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SNR and HNR in NSFG’s+SBG’s neutrino flux
(arXiv:1501.02615)
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γ ray diffuse flux

The same hadronic interactions responsible for the ν
production will also produce very high energy γ

pp −→ pπ0

π0 −→ γγ

However, the γ ray flux will cascade to lower energies

γγ interactions with background light (EBL and CMB)→
production of e−/e+ pairs →
e−/e+ pairs interact again via the inverse compton mechanism
→ γ-ray

This γ ray flux ought not exceed the constraints of Fermi-LAT.
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γ ray diffuse flux (Work in Progress)

Accounting for the internal absorption in the SBGs and the
uncertainties in the intergalactic γ ray absorption releases the
tension
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Conclusions

Cosmic ν’s are very useful to study the CR’s accelerators in
the multimessenger approach

Diffuse neutrino flux might have a (dominant) stellar remnant
origin

SBG’s are very efficient ν producers

SNRs-HNRs in NSFGs-SBGs are plausible candidates

I The SNR-HNR in NSFGs-SBGs ν dominated flux
scenario will result in a break on the spectrum

We (desperately) need more events!

Intragalactic absorption make the associated γ ray diffused
flux compatible with current bounds (WIP)
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γ ray diffuse flux (Work in Progress)
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CR Spectrum
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RSF as a function of z
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Absorption optical depth as a function of z
(arXiv:0905.1115)

Figure: Plot of τγγ = 1 for several EBL models as a function of redshift.
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Differences between NSFGs and SBGs

Type NSFGs SBGs
Proton number density n (cm3) 10 102

Diffusion coefficient D0 (cm2s−1) 1027 1028

Stellar wind velocity Vw (km s−1) 500 1500

Scale high h (kpc) 0.5 1
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NSFGs (f.e. Milky Way)

np = 10cm3

Galaxies with a SFR (4)

Vw (' 500 kms−1)

scale high h ' 0.5 (kpc)
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SBGs

Dense galaxies (n = 102cm3)

High Vw (' 1500 kms−1)

scale high h ' 1 (kpc)

Relative rate of SBGs → (10-20)% of the NSFGs
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Diffused ν flux

The observed diffuse flux of neutrinos from a particular stellar
remnant will have contributions from different redshifts:

dN(E ob
ν )

dE ob
ν

=
c

4πH0

∫ zmax

0

dN(Eν)

dEν

RSR(z) dz√
ΩM(1 + z)3 + Ωλ

Biggest uncertainties:

The Ep,max will range between (103 − 104) and (104 − 105)
TeV for SNRs and HNRs, respectively

The fSBG/fNSFR will range between (0.1-0.2)
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HNRs in SBG neutrino flux (arXiv: 1310.1362)
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Fermi γ ray flux
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