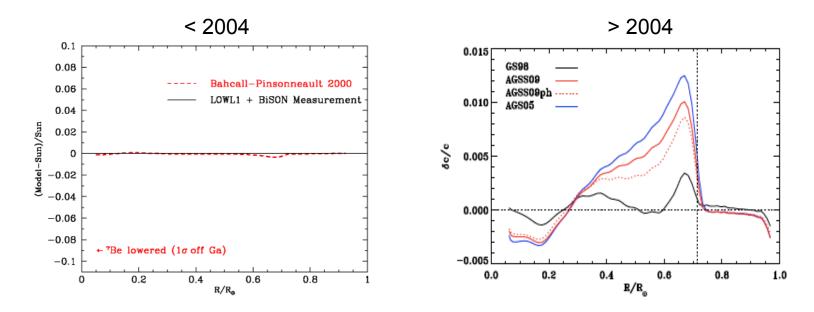
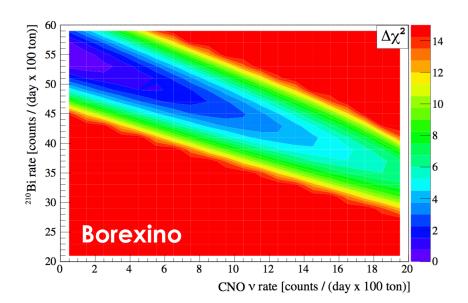

Solar neutrino detection in a large volume double-phase liquid argon experiment


Davide Franco APC

Magellan Workshop 18-19 March 2016

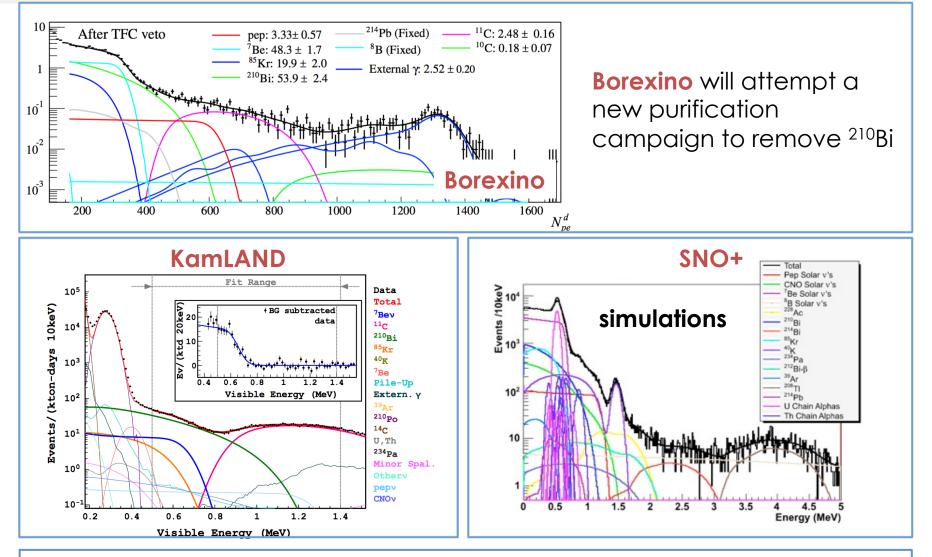
The experimental status


The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. **85**, 161 (1998)), was in **agreement within 0.5 in %** with the solar sound speed measured by helioseismology.

Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A 777, 1 (2006)) indicates a lower metallicity by a factor ~2. This result destroys the agreement with helioseismology

...and the CNO component

[cm ⁻² s ⁻¹]	pp (10 ¹⁰)	pep (10 ¹⁰)	hep (10 ³)	⁷Be (10 ⁹)	8 ₿ (10 ⁶)	¹³ N (10 ⁸)	¹⁵ O (10 ⁸)	¹⁷ F (10 ⁶)
GS98	5.97	1.41	7.91	5.08	5.88	2.82	2.09	5.65
AGS09	6.03	1.44	8.18	4.64	4.85	2.07	1.47	3.48
Δ	-1%	-2%	-3%	-9%	-18%	-27%	-30%	-48%



Never observed

Borexino: <7.9 10⁶ cm⁻² s⁻¹(95% CL)

CNO neutrino (via elastic scattering) and ²¹⁰Bi have similar shapes: strong correlation in spectral fits

CNO and ²¹⁰Bi

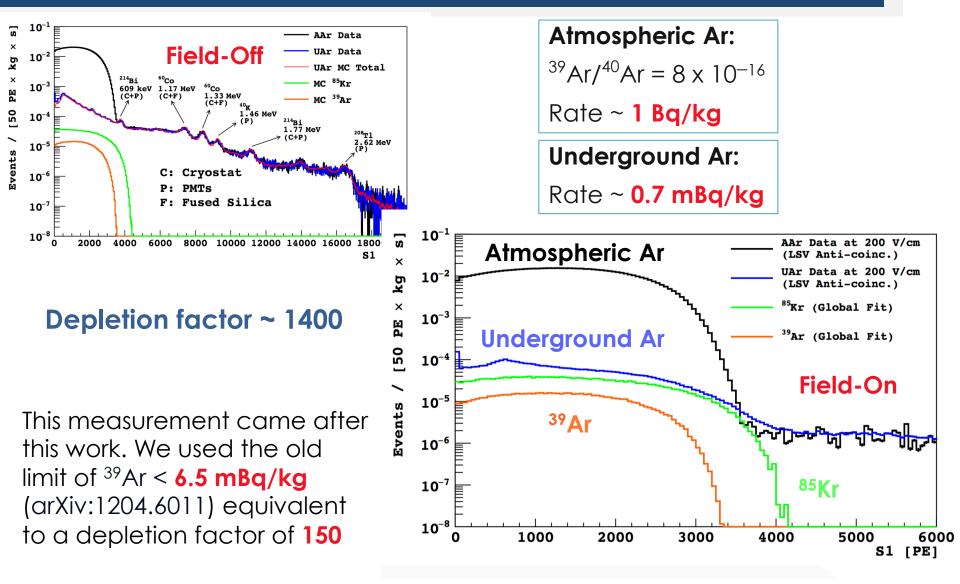
Difficult to reach the sensitivity to "observe" CNO and to disentangle the metallicity models with **scintillators**

Two-Phase Liquid Argon TPC

Liquid Argon:

- Excellent scintillator: 40,000 photons / MeV
- It does not bond with chemical species
- It can be easily **purified** both in liquid and in gas phases
- Higher intrinsic radio-purity wrt organic liquid scintillators
- Scalable to multi-ton (hundreds of ton) mass targets
- Exceptional PSD

Two-phase TPC:

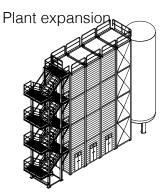

- Excellent 3D position reconstruction
- Excellent identification and rejection of multiple interactions

Already planned for **Direct Dark Matter Search**

Ideal to observe **CNO neutrinos** via elastic scattering

The ³⁹Ar issue after DS50

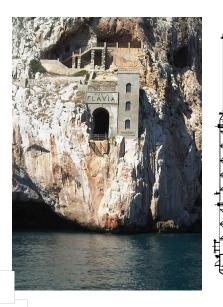
DS Collaboration: arXiv:1510.00702


Towards Multi Tonne LAr

Depleted Ar: the URANIA and ARIA projects

URANIA

Replacement of the Ar extraction plant in Colorado to reach capacity of **100 kg/day** of UAr





ARIA

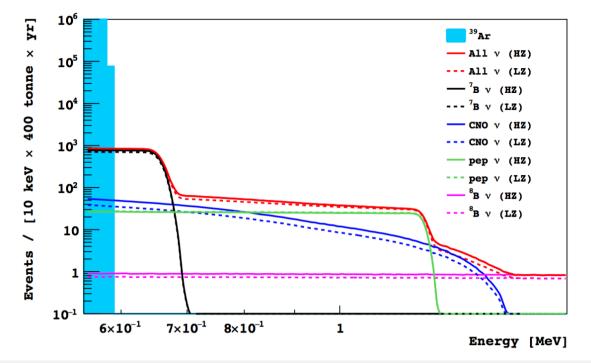
Very tall distillation column in Seruci mine (Sardinia) for chemical and isotopic purification of UAr

Exploits finite vapor pressure difference between ³⁹Ar/⁴⁰Ar: ³⁹Ar reduction factor of 10 per pass at the rate of **100 kg/day**

Assumed ³⁹Ar activity: **6 mBq / kg** (³⁹Ar Q-value: 565 keV)

Energy resolution

DS50: ~7,000 pe/MeV@200 V/cm DS50: ~8,500 pe/MeV@0 V/cm MicroCLEAN: ~6,000 pe/MeV@0 V/ cm


MicroCLEAN has demonstrated **linear energy response** within 2% above 40 keV Rol: > 600 keV (0 ³⁹Ar events expected in 400 tonne year)

Conservative LY assumed in this work: 6,000 pe/MeV @200 V/ cm

Full capability to discriminate multiple interactions if $\Delta z > 2 \text{ mm}$

Solar Neutrino Rate

Noutrino	Source	Low Meta	llicity (LZ)	High Metallicity (HZ)			
Neutrino Source		All	$[0.6-1.3]~{ m MeV}$	All	$[0.6\text{-}1.3]~\mathrm{MeV}$		
pp		107.9 ± 2.0	0	107.0 ± 2.0	0		
pep		2.28 ± 0.05	1.10 ± 0.02	2.23 ± 0.05	1.07 ± 0.02		
$^{7}\mathrm{Be}$		36.10 ± 2.60	2.85 ± 0.21	39.58 ± 2.85	3.13 ± 0.23		
CNO		3.06 ± 0.30	0.64 ± 0.06	4.28 ± 0.44	0.90 ± 0.09		
$^{8}\mathrm{B}$		0.30 ± 0.04	0.035 ± 0.005	0.36 ± 0.06	0.042 ± 0.007		
Total	cpd /	100 tonne	4.63 ± 0.22		5.14 ± 0.25		

In 400 tonne year in the Rol: ⁷Be: ~4,400 events pep: ~1,600 events CNO: ~1,100 events

The Detector

(not a scaled plot)

TPC

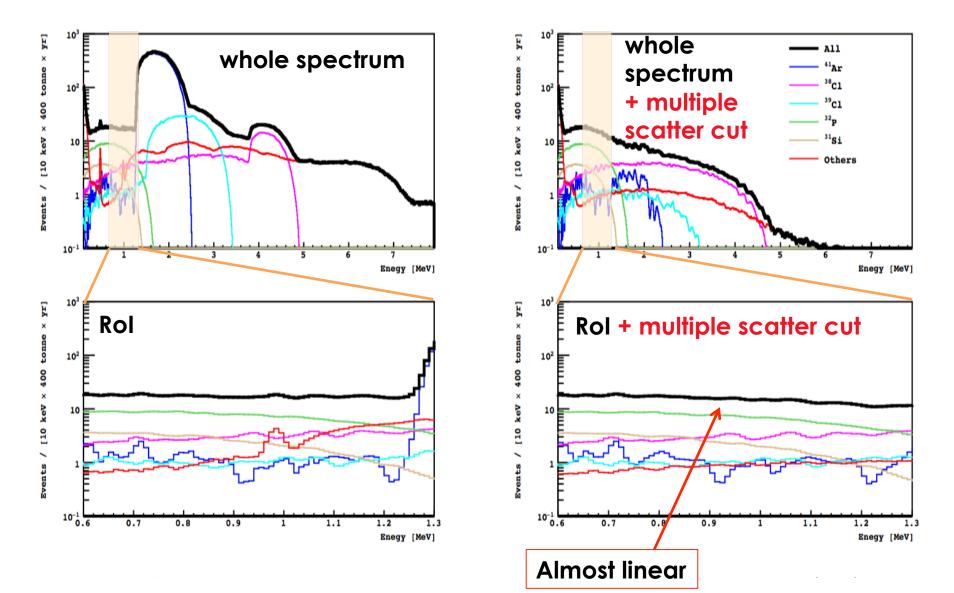
3 m height 3.3 m radius 150 tonne mass 3 cm thick teflon envelop 2 cm gas pocket 2 mm thick SiPM on top/bottom

Cryostat

3.2 m height3.5 m radius3 mm thick stainless steel

Liquid scintillator veto

6 m radius 3 mm thick stainless steel

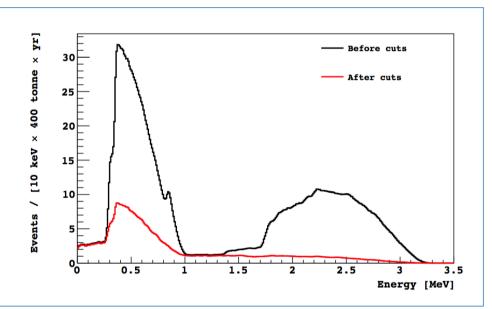

Water veto 17 m height 8 m radius

Source	Origin	From	Comment
⁴² Ar- ⁴² K	Anthropogenic	LAr	Not present in UAr – Observed by GERDA in AAr
⁸⁵ Kr	Anthropogenic??	LAr	Observed (very recently) by DS50 in UAr
Induced by cosmic rays	Cosmogenic	LAr	
Radon	Natural	Liquid/gaseous argon circulation loop	
External Bg	Natural	Detector components (mostly steel and teflon)	

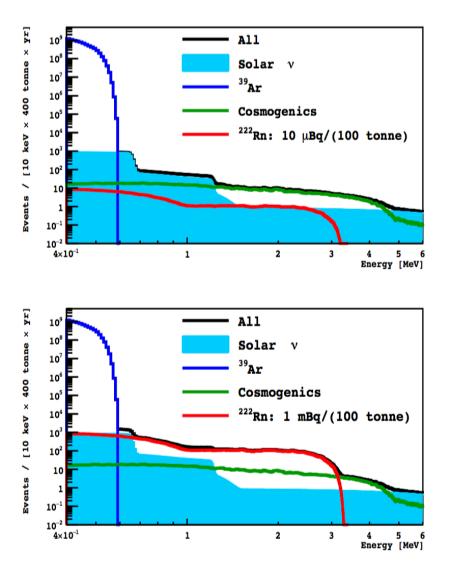
Cosmogenics

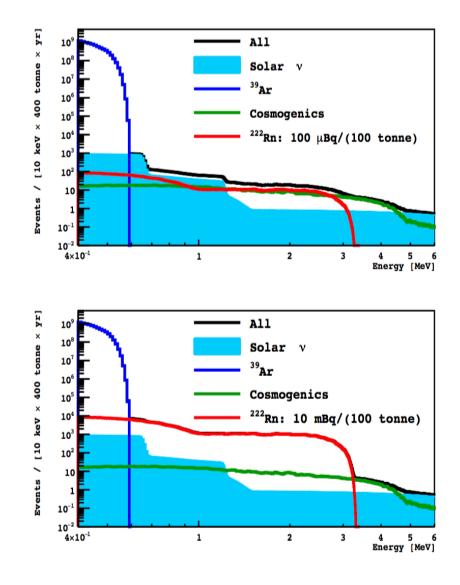
Со		c mu	keV]	Activity [cpd/100 t] s at LNO lepth		e Half Life	Decay Mode	Q-value [keV] 4812.36 1491.5 227.2 5845	Activity [cpd/100 t] 4.84e-03 ± 2.42e-03 2.33e-01 ± 1.68e-02 1.26e-03 ± 1.15e-04 1.69e-02 ± 4.53e-03	Isotope $^{17}\mathrm{F}$ $^{18}\mathrm{F}$ $^{20}\mathrm{F}$	Half Life 64.49 s 109.77 min 11.163 s	Decay Mode β^+ β^+ β^-	Q-value [keV] 2760.8 1655.5 7024.53	Activity [cpd/100 t] 3.63e-03 ± 2.09e-03 4.11e-02 ± 7.05e-03 3.99e-02 ± 6.95e-03
•	Ener distri Flux: u+/µ-	gy ar butio	nd ns µ /	ean en angulo from M ' hr / m	ar 1ACF 2	20		Sir •	nulations Isotopes known to factor 2 Generat	pro b be	acc	urate	witl	hin a
⁹ C ¹⁰ C ¹¹ C ¹⁴ C ¹⁵ C ¹⁶ C ¹² N ¹³ N ¹⁶ N ¹⁷ N ¹⁸ N	126.5 ms 19.290 s 1221.8 s 5700 y 2.449 s 0.747 s 11.000 ms 9.965 min 7.13 s 4.173 s 624 ms	β^+ 2 β^+ 1 β^- 2 β^- 2 β^- 2 β^+ 1 β^+ 2 β^- 2 β	16494.8 2929.62 1982.4 156.475 9771.7 7891.58 17338.1 2220.49 10419.1 3680 11916.9	$\begin{array}{c} 4.84e-03 \pm 2.42e-03 \\ 8.47e-03 \pm 3.20e-03 \\ 5.44e-02 \pm 8.11e-03 \\ 8.42e-06 \pm 1.11e-06 \\ 1.21e-02 \pm 3.82e-03 \\ 1.21e-03 \pm 1.21e-03 \\ 1.21e-03 \pm 1.21e-03 \\ 3.63e-03 \pm 2.09e-03 \\ 3.87e-02 \pm 6.84e-03 \\ 1.21e-02 \pm 3.82e-03 \\ 1.21e-03 \pm 1.21e-03 \\ 1.21e-03 \pm 1.21e-03 \end{array}$	³⁰ S ³¹ S ³⁵ S ³⁷ S ³⁸ S ³⁴ Cl ³⁸ Cl ³⁹ Cl ⁴⁰ Cl ³⁵ Ar	1.178 s 2.5534 s 87.37 d 5.05 min 170.3 min 11.5 s 1.5266 s 37.230 min 55.6 min 1.35 min 1.7756 s	EC EC β^- β^- β^- EC β^- β^- β^- β^- EC	•	through Muon sh isotopes Producti Each of Geant4	0.7 r owe (<1 on c	m of i ers ar ms) v of 84	rock nd sha vetoe isotop	ort liv d Des	ved
¹⁴ 0 ¹⁵ 0 ¹⁹ 0 ²⁰ 0	70.606 s 122.24 s 26.88 s 13.51 s	β^+ β^+ $\beta^ 4$	5143.04 2754 4819.6 2757.45	$\begin{array}{c} 1.21e\text{-}03 \pm 1.21e\text{-}03 \\ 1.21e\text{-}03 \pm 1.21e\text{-}03 \\ 2.06e\text{-}02 \pm 4.99e\text{-}03 \\ 1.09e\text{-}02 \pm 3.63e\text{-}03 \\ 6.05e\text{-}03 \pm 2.70e\text{-}03 \end{array}$	³⁷ Ar ³⁹ Ar ⁴¹ Ar ³⁸ K	1.7750 s 35.011 d 269 y 109.61 min 7.636 min	EC β^-	813.87 565 2491.61 5913.86	$\begin{array}{l} 1.48e{+}00 \pm 4.16e{-}02 \\ 4.02e{-}02 \pm 4.84e{-}04 \\ 2.23e{+}01 \pm 1.64e{-}01 \\ 7.26e{-}03 \pm 2.96e{-}03 \end{array}$	³⁰ Al ³¹ Al ³² Al	3.62 s 644 ms 33.0 ms	β^- β^- β^-	6325.68 5205.97 13020	$\begin{array}{c} 2.78\text{e-}02 \pm 5.80\text{e-}03 \\ 2.42\text{e-}03 \pm 1.71\text{e-}03 \\ 1.21\text{e-}03 \pm 1.21\text{e-}03 \end{array}$

Cosmogenics



Cosmogenics: a summary


Icotopo	Half Life	Decor Mode	Q-value	Rate			
Isotope	nall Life	Decay Mode	[MeV]	Entire Range	$[0.6\text{-}1.3]~\mathrm{MeV}$		
$^{41}\mathrm{Ar}$	$109.61 \mathrm{~min}$	β^-	2.492	0.213	0.054		
$^{38}\mathrm{Cl}$	$37.230 \min$	β^-	4.917	0.815	0.147		
$^{39}\mathrm{Cl}$	$55.6 \min$	eta^-	3.442	0.173	0.051		
$^{32}\mathrm{P}$	$14.268 \ d$	β^-	1.711	0.636	0.332		
$^{34}\mathrm{P}$	$12.43~\mathrm{s}$	eta^-	5.383	0.145	0.021		
$^{31}{ m Si}$	$157.36 \min$	eta^-	1.492	0.229	0.106		
Others				1.897	0.022		
Total	cpd / 100 to	nne		4.108	0.733		


S/B	~ 7
-----	-----

- ²²²Rn diffuses by purification loop of the cryogenic and gas handling system
- Cold-charcoal traps: fractions of the μ Bq in 1 m³ in GAr
- Potentially, with cryogenic adsorption technique: < 1 mBq/100 tonne
- Alpha's efficiently rejected with **PSD**
- 6.9% of ²¹⁴Pb and 5.9% of ²¹⁴Bi survive to the cuts
- ²¹⁴Bi-Po coincidence is here assumed with 60% efficiency

Radon

External Background

Source	Origin	Attenuation	Survived Fraction			
		$length \ [cm]$	without FV	with FV		
40 K	Photosensors	3.9	$0.3 imes 10^{-2}$	1×10^{-6}		
$^{214}\mathrm{Bi}$	Photosensors	4.2	$1.1 imes 10^{-2}$	$9 imes 10^{-6}$		
$^{208}\mathrm{Tl}$	Photosensors	3.6	$0.7 imes 10^{-2}$	2×10^{-6}		
⁶⁰ Co	Cryostat	5.1	$0.1 imes 10^{-2}$	3×10^{-6}		

FV = 30 cm cut from the TPC walls

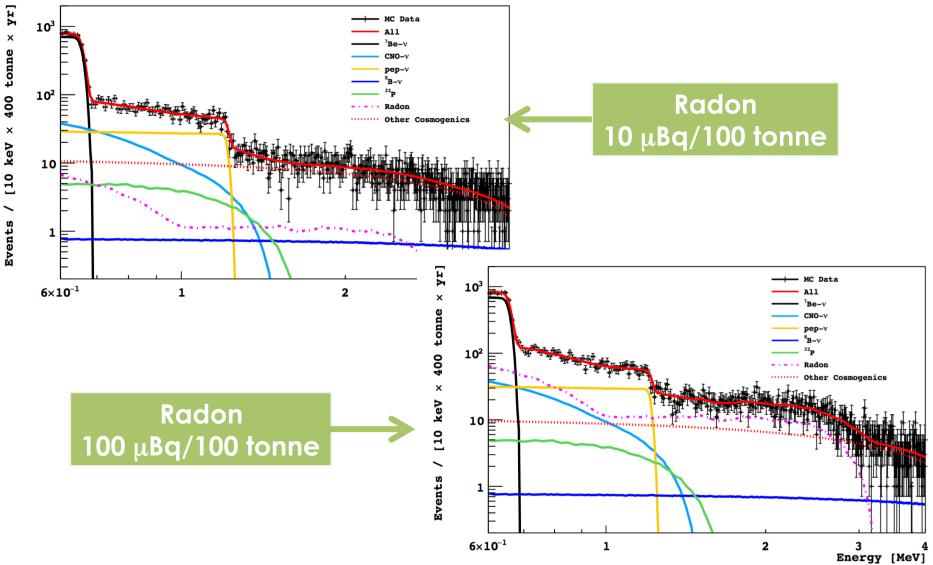
Only 60Co is an issue

Assuming the lowest ⁶⁰Co activity in literature in stainless steel (6.6 mBq/kg) => 1.7 cpd / tonne expected in the FV after the cuts

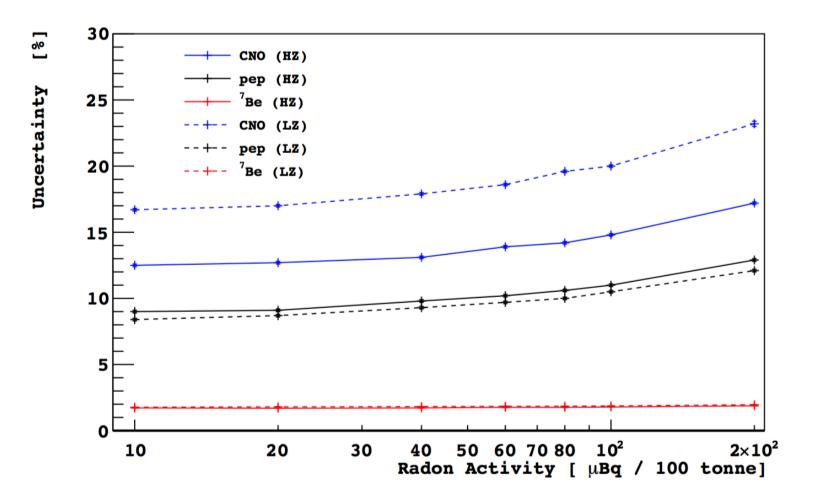
Definitive solution to ⁶⁰Co is a **titanium cryostat**

External background is here considered negligible

Toy MC Approach

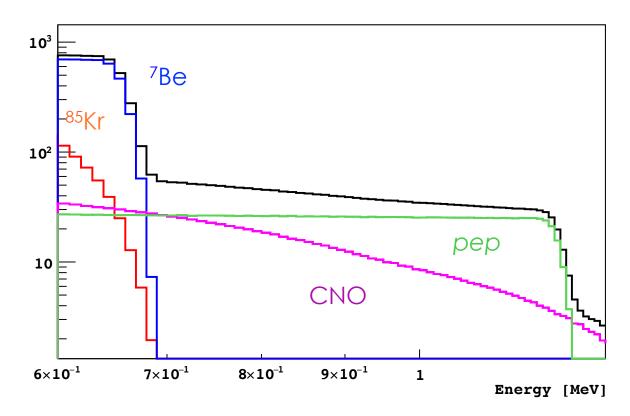

Toy MC Strategy

- 10,000 samples of simulated data for each radon activity
- Poisson statistics corresponding to a **400 tonne yr exposure**
- Each signal and bg component **independently** generated
- Repeated for each **metallicity** model
- detector resolution for a light yield of 6,000 pe/MeV


Fit Strategy

- binned likelihood with ROOFIT
- Radon activity varied from 10 to 200 μBq / 100 tonne
- Radon amplitude weighted by the uncertainty on the BiPo coincidences (60% efficiency)
- Cosmogenics modeled with 1st degree polynomial (2 free parameters) + ³²P

Fit to the toy MC samples


Fit Results

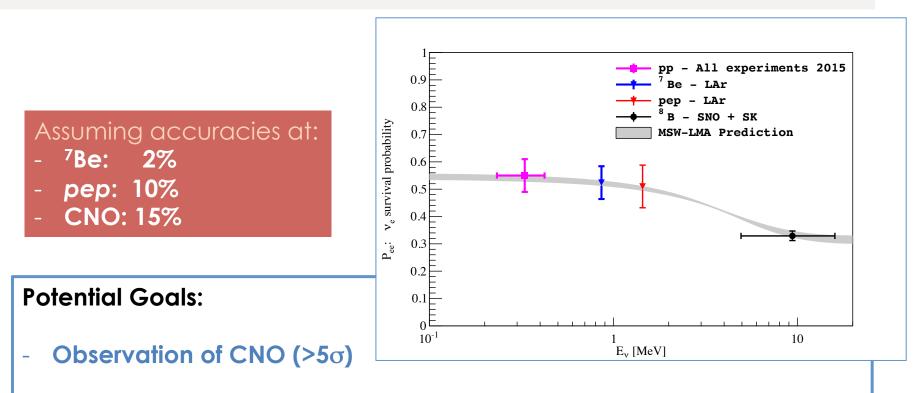
CNO amplitude dominated by systematics >200 μ Bq /100 tonne

 85 Kr

⁸⁵Kr affects only the ⁷Be measurement (Q-value: 687 keV)

Fixing radon activity to 10 μ Bq/100 tonne, we tested 85Kr contamination at 1, 10 and 100 μ Bq/100 tonne: ⁷Be uncertainty changes to 2%, 3.5%, and 5%, respectively

High accuracy on the energy scale and on the position reconstruction (systematics at percent level) -> Only ⁷Be affected


Main systematics from the cosmogenic fitting model

To test the model, each cosmogenic component activity was randomly varied within a factor 2. The toy MC and fitting procedure was then repeated for two cases: radon contaminations at 10 and 100 μ Bq/100 tonne.

No differences with respect to the already quoted results

Percent level overall systematic: achievable

Impact of the results

- Determination of the C and N content in the Sun at 16.5% level (currently at 25%)
- S17 (⁷Be(p,γ)⁸B) precision from 12% to 8% (one of the input parameters of the SSM)
- Good potential in discriminating between metallicity models

Conclusions

Two-phase LAr TPC with 100 tonne fiducial mass already on the DarkSide roadmap (ARGO) for direct dark matter search

Exceptional radio-purity and resolutions

Strong potential in solar neutrino physics

Background can be kept under control. **Need some effort** especially for radon and external background.

Solar neutrino detection in a large volume double-phase liquid argon experiment

More details in arXiv:1510.04196

D. Franco^{a,1} C. Giganti^b P. Agnes^a L. Agostino^b B. Bottino^{c,d} S. Davini^{e,f} S. De Cecco^b A. Fan^g G. Fiorillo^{h,i} C. Galbiati^{j,k} A. M. Goretti^f E. V. Hungerford^l Al. Ianni^{f,m} An. Ianni^{j,f} C. Jolletⁿ L. Marini^{c,d} C. J. Martoff^o A. Meregagliaⁿ L. Pagani^{c,d} M. Pallavicini^{c,d} E. Pantic^p A. Pocar^{q,j} A. L. Renshaw^{g,l} B. Rossi^{h,j} N. Rossi^f Y. Suvorov^{f,g,r} G. Testera^d A. Tonazzo^a H. Wang^g S. Zavatarelli^d

 ^a APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, Paris 75205, France
 ^b LPNHE Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris

75252, France