Simulation of imaging air shower Cherenkov telescopes as part of the TAIGA Project

Maike Kunnas for the TAIGA collaboration
maike.kunnas@desy.de
University of Hamburg, Germany
Magellan Workshop 2016
iti Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUNG

HELMHOLTZ ASSOCIATION

Motivation

- High energies \rightarrow Low fluxes \rightarrow Low rate requires large detection areas for proper sensitivity
- Sources at 10-100 TeV exist

The TAIGA Project

Combination of multiple approaches:

The TAIGA Project

Combination of multiple approaches:

 HiSCORE:- Shower-front sampling array
- Large area, good core position and directional reconstruction
- Poor Gamma-Hadronseparation at lower energies

For details, see talk by Martin Tluczykont, earlier today.

The TAIGA Project

Combination of multiple approesces:

Imaging air Cherenkov

 telescopes (IACT):- HEGRA-like imaging telescopes
- Good gamma-hadronseparation, esp. for point sources
- Stereoscopy needed for excellent reconstruction
\rightarrow expensive to cover large areas

Simulations for the IACT

- Point spread function
\rightarrow Determine quality of telescope design
- Gamma-Hadron-Separation
\rightarrow Do we get the desired effect?

All done with CORSIKA [D. Heck et al., 1998] and the sim_telarray code [K. Bernlöhr, 2008]

Point Spread Function Simulation

Whole dish, ideal Davies-Cotton telescope:
No night sky background, ideally spherical mirrors, no mirror misalignment

Dish diameter: 4.3 m , Focal length $4.75 \mathrm{~m}, 32$ mirror segments with 0.6 m diameter each

Point Spread Function Simulation

Tesselation ratio:

$$
T=r_{\text {segment }} / R_{\text {dish }}
$$

Bigger tiles \rightarrow bigger spherical abberations
\rightarrow Slant to semi-analytical prediction was expected

TAIGA IACT pixel diameter: $3 \mathrm{~cm}, 0.38^{\circ}$
\rightarrow PSF significantly smaller than pixel size

TAIGA PSF vs. prediction

[1] Schliesser, Mirzoyan 2005

Point Spread Function Measurement

TAIGA single mirror PSF measurement

All mirrors received so far are well below the full dish's PSF

Combination of timing array Encl

Gamma-Hadron-Separation using shower width

EAS with $0.5-50 \mathrm{TeV}$ as seen by IACT

Hillas analysis parameter: shower width

Hadronic showers are wider \rightarrow Cut on width

Cut Quality $\quad Q=\frac{\epsilon_{\gamma}}{\sqrt{\epsilon_{p}}}<1.5$

Gamma-Hadron-Separation using shower width

Scale width to the Monte Carlo expectancy value for gamma showers

Conclusion and outlook

Conclusion:

- First combination between shower front sampling and IACT
- Our IACT design is feasible
- Core information from sampling array, gamma-hadron separation from IACT images
\rightarrow Improve the separation quality

Outlook:

- Full Hybrid simulation
- Improved geometrical reconstruction
\rightarrow Reconstruction of partly truncated IACT images
- Include separation information from shower front sampling
\rightarrow Improve separation quality even further

Thank you for your attention!

Acknowledgements

We acknowledge the support of the Russian Federation Ministry of Education and Science (agreements N 14.B25.31.0010, N2014/15, project 1366, zadanie N 3.889.2014/K), the Russian Foundation for Basic Research (grants 13-02-00214, 15-02-10005, 13-02-12095), The Helmholtz Association (grant HRJRG-303), and the Deutsche Forschungsgemeinschaft(grant TL 51-3).

Further References

显
A．Schliesser and R．Mirzoyan，Wide－field prime－focus imaging atmospheric Cherenkov telescopes：A systematic study，Astrop．Phys． 24 382－390（2005）［astro－ph／0507617］M．Tluczykont et al，The HiSCORE concept for gamma－ray and cosmic－ray astrophysics beyond 10 TeV Astropart．Phys． 56 42－53（2014） ［1403．5688］．
R．Heck et al，Report FZKA 6019 （1998），available from http：／／www－ik．fzk．de／corsika／physics＿description／corsika＿phys．html
－D．Hampf，M．Tluczykont and D．Horns，Event reconstruction techniques for the wide－angle air Cherenkov detector HiSCORE Nucl．Inst．Meth．in Phys．Res．A 137－146（2012／13）［1302．3957］

M．Tluczykont et al，Towards gamma－ray astronomy with timing arrays in proceedings of ECRS（2014）
埥 K．Bernlöhr Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim＿telarray，Astropart．Phys．149－158（2008）

Backup Slides

IACT and HiSCORE parameters

Hundred*i Square km Cosmic TAIGA IACTs: Origin Explorer (HiSCORE)

- 4 8" PMTs per station
- Winston cone light collectors
- 60° of view
- 28 stations deployed sofar
- $0.25 \mathrm{~m}^{2}$ covered
- 120 m - 160 m spacing
- extendable to $3 \mathrm{~km}^{2}$
- Davies-Cotton design
- 4.30 m mirror diameter
- 4.75 m focal length
- 540 pixel camera
- 10° of view
- in development
- 600 m spacing considered

HESS

Percentaqe

Hess width distribution from [F. Aharonian et al, 2007]

