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Functional integrals and QFT

The expecation value of an operator O is defined
non-perturbatively by the functional integral

〈O〉 ≡
1
Z

∫

(Dφ) e−S[φ]O[φ],

normalisation constant Z is chosen such that 〈1〉 = 1,
Dφ is the appropriate functional measure,
S[φ] is the action.

In QFT there is one integration per degree of freedom:
we are dealing with an infinite dimensional functional
integral,
well-defined only in Euclidean space-time using a lattice
regularisation and a finite volume.
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Monte Carlo methods I

Lattice regularisation:
continuum limit (lattice spacing a→ 0) and thermodynamic
limit (physical volume V →∞) are necessary,
still dealing with hopelessly many integrations. . .

Monte Carlo integration is based on the identification of
probabilities with measures:

⇒ importance sampling

generate a sequence of random field configurations
{φ1, φ2, . . . φN} chosen from the probability distribution

P(φt )Dφt =
1
Z

e−S[φt ],
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Monte Carlo methods II

measure the value of O on each configuration and compute
the average

O ≡
1
N

N
∑

t=1

O[φt ].

Limit of large numbers guarantees

〈O〉 = lim
N→∞

O.

Central limit theorem guarantees 〈O〉 ∼ O + O(
√

σ
N ),

where the variance of the distribution of O is
σ ≡ 〈(O − 〈O〉)2〉.
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Markov chains I

Use Markov process to generate the correct probability
distribution.

Consider space of configurations Ω together with (ergodic)
stochastic transitions P ′ : Ω→ Ω .

The deterministic evolution of probability distributions
P : Q → Q is a Markov process.
Distribution converges to a unique fixed point:

Define a metric on the space of probability distributions,
show Markov process is a contraction mapping,
the sequence Q,PQ,P2Q,P3Q, . . . is Cauchy,
space of probability distributions is complete, so

Q = lim
n→∞

PnQ

is the unique fixed point.
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Markov chains II

Suppose ergodic Markov process P with Q as its fixed
point.

Use Markov chains to sample from Q:
start with an arbitrary state,
iterate the Markov process until it has converged,
(’thermalised’)
thereafter, successive configurations will be distributed
according to Q.

To construct P we only need relative probabilitites of
states:

we don’t know the normalisation of Q,
can only compute ratios of integrals,
cannot use Markov chains to compute integral directly.
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Markov chains III

How to construct a Markov process with specified Q?
Detailed balance P(y ← x)Q(x) = P(x ← y)Q(y)

⇒ sufficient but not necessary.

Metropolis algorithm P(x ← y) = min
(

1, Q(x)

Q(y)

)

⇒ sufficient but not necessary for detailed balance.

Other choices are possible, e.g. P(x ← y) = Q(x)

Q(y)+Q(x)
.

Markov steps P1,P2 with the same fixed point distribution
can be combined P1 ◦ P2

P1 ◦ P2 may be ergodic, even if P1 and P2 are not.
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Hybrid Monte Carlo I

In order to carry out Monte Carlo computations we want an
algorithm which

updates the fields globally,
→ since single updates are expensive for non-local actions,

takes large steps through configuration space,
→ in order to decorrelate successive configuration

does not introduce any systematic errors.
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Hybrid Monte Carlo II

A useful class of algorithms with these properties is the
Hybrid Monte Carlo (HMC) method:

introduce ’fictitious’ momentum p conjugate to each
dynamical degree of freedom q,
find a Markov chain with fixed point ∝ exp[−H(p, q)] where

H(p, q) =
1
2

p2 + S(q)

is the ’fictitious’ Hamiltonian:
the action S(q) of the underlying QFT plays the role of the
potential in the ’fictitious’ classical mechanics system,
the Hamiltonian gives the evolution of the system in a fifth
dimension, ’fictitious’ or MC time.

This generates the desired distribution exp[−S(q)] if we
ignore the momenta p.
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Hybrid Monte Carlo III

The HMC Markov chain alternates two Markov steps.
Molecular Dynamics Monte Carlo:

exact integration of Hamilton’s equations gives a trajectory of
constant ’fictitious energy’
→ equiprobable fictitious phase space configurations,
approximate integration must be reversible and area
preserving,
the so produced phase space configurations have to pass a
Metropolis accept/reject step with acceptance
min[1, exp(−δH)]

(Partial) Momentum refreshment.

Both steps have the desired fixed point.

Together they are ergodic.

Note: the Metropolis test makes the algorithm exact even for
approximate integration.
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QCD on the Lattice

Quantumchromodynamics is formally described by the
Lagrange density:

LQCD = ψ̄(i/D −mq)ψ−
1
4

GµνGµν

Lattice regularization: discretize Euclidean space-time

hypercubic L4-lattice with
lattice spacing a

derivatives⇒ finite differences

integrals⇒ sums

gauge potentials Aµ in Gµν ⇒
link matrices Uµ (’ ’)

L

a
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QCD on the Lattice II

Partition function ZQCD =
∫ (

DUDψDψ
)

e−SQCD[U;ψ,ψ]

Mathematically well defined theory

Non-perturbative, gauge invariant regularisation (low
energy physics)
Continuum limit⇒ a→ 0

Poincaré symmetries are restored automatically

Direct simulation of Grassmann fields is not feasible.
The problem is not that of manipulating anticommuting
values in a computer.
It is that e−SF = e−ψ̄Dψ is not positive and thus we get poor
importance sampling.
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QCD on the Lattice III

We therefore integrate out the fermion fields to obtain the
fermion determinant

∫

DψDψ̄e−ψ̄Dψ ∝ det(D):

Z =

∫

(DU) det D(U)e−SG[U]

ψ and ψ̄ always occur quadratically,
the overall sign of the exponent is unimportant.

Any operator O can be expressed in terms of the bosonic
fields

O′(U) = O

(

δ

δψ
,
δ

δψ̄
; U

)

e−ψ̄Dψ
∣

∣

∣

∣

ψ=ψ̄=0

e.g. the fermion propagator is 〈ψ(x)ψ̄(y)〉 = D−1(x , y).
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Dynamical fermions I

Pseudofermions:
Represent the fermion determinant as a bosonic Gaussian
integral with a non-local kernel

det D(U) ∝

∫

DφDφ̄e−φ̄D−1(U)φ.

The fermion kernel must be positive definite for the bosonic
integral to converge.
The new bosonic fields are called pseudofermions.
It is usually convenient to introduce two flavours of fermions
and to write

(det D(U))2 = det
(

D(U)†D(U)
)

∝

∫

DφDφ̄e−φ̄(D(U)†D(U))−1
φ
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Dynamical fermions II

Introduce Gaussian momenta Pµ(x) conjugate to Uµ(x)
with action SP = 1/2

∑

µ,x Pµ(x)2.
The new partition function is now

Z =

∫

(

DUDφDφ
)

e
−SP−Sg [U]−φ 1

D†(U)D(U)
φ

Generate a sequence of {P,U} with the correct probability
distribution:

update Pµ(x) using Gaussian random noise,
update φ using Gaussian random noise via φ = D†η,
evolve {P, U} according to the Hamiltonian

H[P, U] =
1
2

P2 + Sg[U] + Sf [U]

accept/reject the final configuration {P′, U ′} with probability

Paccept = min
“

1, e−(H[P′
,U′]−H[P,U])

”

.

LAP06 Urs Wenger LQCD algorithms 27 November 2006



Lattice QCD and Monte Carlo methods
Inversion algorithms

Improvements of HMC

Functional integrals and Monte Carlo
Lattice formulation of QCD
Hybrid Monte Carlo for QCD

Dynamical fermions III

The discrete Hamiltonian equations of motion dictate the
following update for U and P,

TU(δτ) : U =⇒ eiδτPU

TP(δτ) : P =⇒ P + δτ · F

where F is the force due to the variation of the gauge field:

F = −
δH

δU
.

Inversions required for the equations of motion need not be
exact – integration is approximate anyway.

Inversion for the Metropolis accept/reject step needs to be
’exact’.
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Dynamical fermions IV

Are HMC trajectories reversible and area preserving?
Yes, if a leapfrog integration scheme is used:

T (δτ) = TP(δτ/2)TU(δτ)TP(δτ/2).

Recently, so-called Omelian integrators were suggested
which are also reversible and area preserving, but appear
to be more efficient.
The only fundamental source of irreversibility is the
rounding error caused by using finite precision floating point
arithmetic.

The evaluation of the pseudofermion action and the
corresponding force requires the solution of a (large) set of
linear equations

(

D†D
)−1

φ = χ.
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Iterative methods I

Consider a system of linear equations Ax = b and the
residual vector r ≡ b − Axi for an approximate solution xi .

Rewriting the system as

(I − (I − A))x = b

leads to a basic iteration

xi = b + (I − A)xi−1

= xi−1 + ri−1

= xi−2 + ri−2 + ri−1

...

= x0 + r0 + r1 + . . .+ ri−1.
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Iterative methods II

Multiply xi = xi−1 + ri−1 with A from the left

Axi = Axi−1 + Ari−1

and subtract from b

b − Axi = b − Axi−1 + Ari−1

ri = ri−1 − Ari−1

= (I − A)ri−1

So finally we have

xi = x0 + r0 + (I − A)r0 + . . .+ (I − A)i−1r0

= x0 + [r0,Ar0,A
2r0, . . . Ai−1r0].
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Krylov spaces I

This linear space defines the Krylov subspace

Kn(A; r0) ≡ span(r0,Ar0,A
2r0,A

3r0, . . . ,A
n−1r0).

Iterative methods are based on finding an approximate
solution xn within a Krylov subspace

⇒ Krylov subspace methods

Convergence is measured by the residual rn = ||b − Axn||.
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Krylov spaces II

Krylov subspace methods are often used as exact
methods:

they require O(V ) iterations to find the solution,
they do not give the ’exact’ answer in practice due to
rounding errors,
they are more naturally thought of as methods for solving
systems of linear equations in an (almost)∞-dimensional
linear space.
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Krylov spaces III

Approximations obtained from a Krylov subspace method
are of the form

A−1b ∼ xn = x0 + Pn−1(A)r0

where Pn−1 ia a polynomial of degree n − 1

For the simple case x0 = 0 we have

A−1b ∼ Pn−1(A)b

i.e. Pn−1(A) is a polynomial approximation of A−1b.

All techniques provide the same type of polynomial
approximations, but the type of constraints has important
effects.
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Krylov spaces IV

More specifically, we seek an approximate solution xn in
Kn by imposing the Petrov-Galerkin projection condition

rn ≡ b − Axn ⊥ Ln

where Ln is another n-dimensional subspace.
Two broad choices:

Ln = Kn(A; r0) or Ln = AKn(A; r0)⇔ orthogonalisation
→ FOM (Arnoldi), GMRES, CG, GCR,. . .
Ln = Kn(A†; r0)⇔ bi-orthogonalisation
→ Lanczos, BCG, QMR, BiCGstab, . . .

A projection method may have different implementations→
different, but mathematically equivalent algorithms.
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Krylov spaces V

For the choice Ln = Kn one can show that {r0, r1, . . . , rn−1}
form an orthogonal basis of Kn(A; r0).
Assume A hermitian and r0, . . . , rn orthogonal. Then

γnrn+1 = Arn − αnrn − βnrn−1 − δn.rn−2 − . . .

Requiring (rn+1, rn−2) = 0 leads to 3-term recurrence

γnrn+1 = Arn − αnrn − βnrn−1.

Requiring (rn+1, rn−1) = (rn+1, rn) = 0 leads to

αn = (Arn, rn)/(rn, rn),

βn = (Arn, rn)/(rn−1, rn−1).
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Krylov spaces VI

In contrast to the above multi-dimensional projection
methods, there also exist 1-dimensional projection
processes where

K = span(w) and L = span(v),

i.e. each iteration step is completely independent of the
previous one.

e.g. Minimal Residual (MR) iteration

The best and most complete reference is

Yousef Saad, Iterative Methods for Sparse Linear Systems,
second edition, SIAM, 2003.
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Multi-shift solvers

Often necessary to solve (A + σ)x = b for several shifts σ
for obtaining propagators at several masses, (D + δmi)

−1b,
for calculating rational matrix functions
Rn,n(A) = Pn(A)

Qn(A) =
∑n

i=1
ci

A+σi
.

For Krylov subspace solvers this can be achieved by
realising that [Jegerlehner, Frommer et al.]

K(A + σ; 0) = K(A; 0).

the solution (A + σ)−1b can be obtained with little overhead
during the construction of A−1b,
only a single Krylov space is needed.

Overall convergence usually governed by the worst
conditioned A + σ.
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Generalities

Most (all) inversion methods suffer from slow convergence.
Preconditioning is the key ingredient for the success of
Krylov subspace methods.
General strategy is to modify the original linear system
which makes it easier to solve by iterative methods:

search for preconditioner M which approximates A−1, then
solve

M−1Ax = M−1b,

M−1 should be easy to calculate.

Polynomial preconditioners, incomplete factorisations,
Schwarz alternating procedure, domain decompositions,
. . .

No limits, but good preconditioners usually derived from
good knowledge of the physical problem.
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Even/odd preconditioning I

Dirac operators containing only nearest-neighbour
interactions can be written as

D =

(

Dee Deo

Doe Doo

)

where Dee and Doo are diagonal.
Perform a LU-decomposition

D =

(

Dee 0
Doe 1

) (

1 D−1
ee Deo

0 Doo − DoeD−1
ee Deo

)

= L · U .
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Even/odd preconditioning II

Invert D by inverting each factor separately,

L−1 =

(

Dee 0
Doe 1

)−1

=

(

D−1
ee 0
−Doe 1

)

,

U−1 =

(

1 D−1
ee Deo

0 Doo − DoeD−1
ee Deo

)−1

=

(

1 −D−1
ee Deo

0 D̂−1

)

where D̂ = Doo −DoeD−1
ee Deo.

Note that D̂ is better conditioned and hence cheaper to
invert than the original D.
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Low-mode preconditioning I

The vector space on which A acts, can be split into two
(bi-)orthogonal pieces using the (bi-)orthogonal projectors

P =
∑

k

rk l†k , P⊥ = 1− P

r ′k s and l ′k s are approximate right and left eigenvectors,
form a bi-orthogonal basis, i.e. l†i rj = δij .

Then A yields the following block form

A =

(

PAP PAP⊥

P⊥AP P⊥AP⊥

)

.
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Low-mode preconditioning II

Perform a LU decomposition of A

A =

(

1 0
P⊥AP(PAP)−1 1

) (

PAP PAP⊥

0 S

)

≡ L · U

where S = P⊥AP⊥ − P⊥AP(PAP)−1PAP⊥ is the Schur
complement of A.
Invert each factor separately,

L−1 is easy:

L−1 =

(

1 0
−P⊥AP(PAP)−1 1

)

U−1 requires (PAP)−1 which is easy (inversion in a small
sub-space) and S−1

Note that S is better conditioned than original matrix A.
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Recapitulation

Recapitulate:
represent the fermion determinant as a bosonic integral,

det
(

D(U)D(U)†
)

=

∫

DφDφ†e−φ†(D(U)D(U)†)−1φ,

introduce Gaussian momenta Pµ(x) conjugate to Uµ(x)
with action SP = 1/2

∑

µ,x Pµ(x)2 ,
evolve P,U according to the Hamiltonian

H =
1
2

P2 + Sg [U] + Sf [U]

yielding the force

F = −
δH

δU
= Fg [U] + Ff [U].
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Multiple time-steps I

One observes that Fg[U] >> Ff [U].
Introduce two time steps:

a short one associated with the large, but cheap gauge
force Fg[U],
a long one associated with the small, but expensive
fermionic force Ff [U].

Moreover, the fermionic force itself can be split into two or
more pieces, Ff [U] = F 1

f [U] + F 2
f [U] + . . . and put on

different time scales according to their size.

Split the force such that the most expensive piece
contributes the least.
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Multiple time-steps II

Generically, this is achieved by splitting the fermion Dirac
operator into a long-range infrared (IR) part and a
short-range ultraviolet (UV) part:

UV part is large, but cheap,
IR part is small, but expensive.

In practice, split the fermion determinant into different
pieces

det(M) = det(M1) det(M2) . . .

and use different pseudo-fermion fields on different time
scales.

How do we obtain the desired splitting?

⇒ look at the preconditionings!
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Multiple time-steps III

Mass preconditioning [Hasenbusch, Urbach et al.]

det
(

D(m)†D(m)
)

= det
(

D(m)†

D(M1)†
D(m)

D(M1)

)

det
(

D(M1)
†D(M1)

)

where m is the physical mass, and M > m the
preconditioning mass:

force from D(M1)
†D(M1) is large, but cheap,

force from 1
D(M1)†

D(m)†D(m) 1
D(M1)

is small but expensive.

Tune M (or possibly M1,M2, . . .) such that the forces are
optimally arranged in order to apply mutiple time-steps.

Speed-up factors can be up to 10 even in a physically
relevant set-up.
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Multiple time-steps III

Polynomial filtering [Peardon et al.]

det
(

D†D
)

= det
(

P
(

D†D
))

det
(

D†D
1

P (D†D)

)

P(x) ≈ 1
x in the interval [µ, λmax

(

D†D
)

].
The approximation covers the UV part of D†D.
Only a low order polynomial is needed, since µ is large.
P(x) is easy to invert and yields a large force contribution.
Correction term is still hard to invert, but yields a small
force.

Speed-up factors currently still under investigation.
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Multiple time-steps IV

Domain decomposition [Lüscher]. An ultra-local Dirac operator
can be decomposed into different domains

D =

(

DΩ D∂Ω

D∂Ω′ DΩ′

)

.

The preconditioning matrix is

D′ =

(

DΩ 0
0 DΩ′

)

.

and describes the UV physics.
D′ is easy to invert and yields a large force.
The correction term is expensive to invert, but yields a small
force.

Again, speed up factors up to 10 can be achieved in
physically relevant situations.
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Multiple time-steps V

Rational Hybrid Monte Carlo [Clark and Kennedy] writes

det
(

D†D
)

= det
[

(

D†D
)1/n

]n

and uses a rational approximation R(x) ≈ x1/n.
Inverse of R is also a rational function.
Use multi-shift solver to calculate R and R−1.
Smallest shift is expensive, but contributes a small force.
Use coarser time scale for the more expensive smaller
shifts.

Improvement factors are again up to 10 in physically
relevant simulation set-ups.
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Conclusions

All the different algorithmic improvements in HMC rely on
multi-pseudofermion fields and multiple time scales.

Together with the usual increase in computer time, the new
developments push lattice QCD calculations into new
regimes.

Calculations are now possible which were not possible
before.

Lattice QCD is entering exciting times,

⇒ make sure you participate!
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