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Overview

1. Chiral symmetry

2. Construction of the overlap operator

3. Solution of linear equations



Chiral symmetry in the continuum

D(m = 0)γ5 + γ5D(m = 0) = 0

I spontaneously broken by interactions: 〈Σ〉 = −〈q̄q〉 6= 0

I explicitly broken by quark mass

I index theorem

Important for understanding of low-energy physics

I light meson spectrum

I chiral perturbation theory

I instantons

=⇒ Want to keep it on the lattice



Chiral symmetry on the lattice

Ginsparg, Wilson ’82

D0γ5 + γ5D0 =
a

R0
D0γ5D0

D0 : massless Dirac operator
a : lattice spacing
R0 : radius of the GW–circle

I correct chiral and flavor symmetries

I O(a) improvement

I topology can be defined by index of the Dirac operator

I simplified renormalization

I strictly positive fermion determinant



Solutions to the Ginsparg–Wilson Equation

I overlap fermions (Neuberger)

I Domain Wall fermions (Kaplan, Shamir)

I Perfect Action (Hasenfratz, Niedermayer,..)

I approximate solutions (Gattringer et al, Bietenholz)

Use the overlap if you want chiral symmetry to machine precision.



Neuberger’s overlap operator

Neuberger ’97, ’98

Dov (m = 0) = R0

[
1 + d(−R0)

1√
d†d(−R0)

]
= R0

[
1 + γ5 ε(h(−R0))

] (1)

with

I h = γ5d Hermitian (Wilson) Dirac operator

I −R0 negative mass shift ∝ 1/a

I ε is the matrix sign function



Construction of the overlap
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Construction of the overlap
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Construction of the overlap

d(−R0)
1√

d(−R0)†d(−R0)
= γ5

h(−R0)√
h(−R0)2

= γ5ε(h(−R0))

Im λ

Re λ



Construction of the overlap

D(m = 0) = R0(1 + γ5ε(h(−R0))

Im λ

Re λ



Construction of the overlap

D(m) = (R0 −
m

2
)(1 + ε(h(−R0)) + m

Im λ

Re λ



Definition of the matrix sign function

ε(h) =
h√
h2

=
∑

i

sign(λi )|λi 〉〈λi |

λi : eigenvalues of h
|λi 〉 : associated eigenvectors -1

0
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Implementation of the sign function
I Use spectral representation for |λ| < |λmin|
I Use approximation for the rest of the spectrum.
I Cost of approximation increases for smaller λmin

ε(h) =
N∑

n=1

sign(λi )|λi 〉〈λi |+ (1−
N∑

n=1

|λi 〉〈λi |)εapp(h)
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Approximation to the sign function



The sign function: Rational approximations

ε(h) = h
M∑
i=1

bi

h2 + ci

I coefficients determined by accuracy and range of the
approximation

I need to solve systems (h2 + ci ) x = v

I multi-mass

I interplay between accuracy of the solver & precision of the
scalar approximation

I need several hundred h on vector multiplications for on Dov.



Example: Zolotarev approximation
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Zolotarev approximation to the sign function

n residue bn shift cn

0 0.037 0.0008
1 0.050 0.009
2 0.078 0.037
3 0.132 0.124
4 0.229 0.395
5 0.406 1.240
6 0.741 3.941
7 1.472 13.244
8 3.841 54.340
9 32.04 601.173

εapp(x) = x
∑
n

bn

x2 + cn

I 10 shifts, x ∈ [0.1, 7] ⇒ 1 · 10−7

accuracy

I cost determined by smallest shift

I smallest shift decreases with larger
range of approx.



Chebychev Polynomials

Approximate 1/
√

h2 by a sum over Chebychev polynomials

ε(h) ≈ h
N∑

n=0

cnTn(h
2)

I sum is computed with the (recursive) Clenshaw algorithm:
numerically very stable

I need several hundred terms

I one parameter determines the accuracy of the approximation



Summary I: Contruction of the overlap operator

Dov(m) = (R0 −
m

2
)
[
1 + γ5ε(h(−R0))] + m

I expensive part is the application of the sign function on a
vector

I project low modes of the kernel operator h(−R0)

I use rational or polynomial approximation for the rest of the
spectrum

I several hundred times more expensive than applying Wilson
operator

I for larger volume, there are more modes to project



Solving systems of linear equations

D†
ov(m)Dov(m)x = b

I use an iterative solver: many tried, best depends on physical
situation

I D†
ovDov has strict upper bound for conditioning number

κ = λmax
λmin

=
R2

0
m2

I total cost niter × nconstruct

I application of D†D as expensive as application of D



Improvements I: adaptive / relaxed precision

Strategy for improvement:

I Krylov methods build solution from {(D†D)nv ; n = 0, ....,N}

x =
N∑

n=0

ci (D
†D)nv

I identify less important contributions and compute ε(h)w with
reduced accuracy

I lower order polynomial
I less accurate rational approximation / reduced inner solver

precision

Recent publications:
Cundy et al, CPC 165:221-242,2005
Chiarappa et al, hep-lat/0609023



Example RelCG

Taken from Cundy et al, CPC 165:221-242,2005
compute x such that ‖D†

ovDovx − b‖ ≤ ε · ‖b‖
x = 0; r = b; p = r ;
γold = γ = r † · r ; ζ = 1/γ;
while

√
γ > ε · ‖b‖ do

compute q with ‖D†
ovDovp − q‖ ≤ ε · ‖b‖ · ‖p‖ ·

√
ζ;

β = q† · p;
α = γ/β;
x = x + α · p;
r = r − α · q;
γ = r † · r ;
ζ = ζ + 1/γ;
p = r + γ/γold · p;
γold = γ;

end while



I Many algorithms can be modified in this way

I key is to find a strategy to relax accuracy and keep
convergence under control

I gain depends on the situation and the solver: up to factor 5
reported

I Cundy et al, CPC 165:221-242,2005

I Chiarappa et al, hep-lat/0609023 (computation of inverse
30-120 times more expensive than TM)



Improvements II: Low mode preconditioning

Same trick as used for the construction of the sign function

(D†
ov(m)Dov(m))−1v =

N∑
i=1

1

λi
ψλi

ψ†λi
v + (1− P)(D†

ovDov(m))−1v

I Can be made exact by Schur complement technique
(Chiarappa et al, hep-lat/0609023)

I even relatively poor eigenvectors can lead to significant
speed-up

I best suited if system is solved for many sources



Conclusions

I chiral symmetry simplifies many lattice computations

I chiral fermions are expensive: need to construct sign function

I state of the art: low-mode projection + rational (Zolotarev)
or polynomial (Chebychev) approximation

I solver can be greatly improved my relaxing the accuracy of
the sign function

I many solvers have been tested; best setup depends on
physical situation

I total cost 30–100 times of twisted mass fermions — in
quenched

I dynamical simultations: coarse lattice should be possible


