Tuning single node and network performance
on PC-clusters

C. Urbach

Division of Theoretical Physics
The University of Liverpool

Zeuthen, 27.11.2006

1 Tuning for PC-clusters

Motivation

e almost everybody has a PC under his desk
e PC clusters are quite common nowadays

e some even have a fast network

So why not get the most out of them...?

2 Tuning for PC-clusters

Outline

@ Introduction

@ Tuning for Single Node Performance
Streaming SIMD extension
Memory and Cache

® Tuning Parallel Performance

@ Summary

3 Tuning for PC-clusters

Introduction

PC-Clusters

In general

nodes with 1 — 4 CPU’s each sharing memory

Intel or AMD CPU's:
P3, P4, Athlon, opteron, itanium

O(1 — 10) GB memory per node

nework:

e Gigabit ethernet
¢ some fast/low latency network like myrinet or infiniband

GNU compilers and maybe more (intel, PGM,...)

some MPI implementation: MPICH or LAM
with special drivers for the fast network

some queueing system like OpenPBS

4 Tuning for PC-clusters

Introduction

CPU and Memory (schematic)

Main Memory

i

Register

Instruction Pipeline

ali] = b[i] + cli] | a[i] = b[i] + c[i] | a[i] = b[i] + c[i] | ali] = b[i] + c[i] | =™

Tuning for PC-clusters

Introduction

Memory Hierarchy

speed size
Register CIWAER very small
Cache fast small - medium
Main Memory slow large - very large

6 Tuning for PC-clusters

Introduction

Memory Hierarchy

¢ Loading data:
main memory ~~ cache ~» registers.

¢ Loading into the Cache can be done in advance
(prefetching)

e Prefetching can be done by the hardware, if your data
structure allows for it (prefetch streams)

e prefetch streams can be enabled if you access data in
sequential order

e Prefetching can also be done by hand.

7 Tuning for PC-clusters

Introduction

Dirac Operator

e Dirac Operator:

D 4(x) =>_{(4+mo)y(x)

+ 3 U+) +)

+ U = aex -)] }

e Optimise the operation:

U (1 + 'Yu)¢

8 Tuning for PC-clusters

Introduction

U(l+r,)

(1 % ~,)¥ has only two independent components

e example:
1 0 1 0\ /o Yo + 2
[0 1 0 1) (1] |¥Y1ts
AW =11 0 1 o [¢|™ | w0+
010 1 U3 V1 + Y3

multiply only two components with Uy ,

allows for further improvement, see later

9 Tuning for PC-clusters

Introduction

U(l+r,)

o define (Projector to a half spinor):

PzE

O OO
o O oo
o+ OO
O O O o

and
PL2 =P, (1£9,)

o define similar: PZ;*
e Therefore |mplement:

(b — UX,;/, (1 e ’Y;/,) 1/} P2—>4 UX,M P4—>2

10 Tuning for PC-clusters

Introduction

Lookup Tables

e when performing the loop over x, we need next neighbours
of x

e can be computed on the fly

e can be computed once at the beginning and then stored in
lookup table nn[x][mu]

e my experience: lookup tables work faster

e but don’t have too many of them...

11 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

Vector Processing Units

e go under the names MMX, SSE, SSE2, SSE3,
3DNow!, Altivec, DoubleHummer, ...

e originally to speed up multimedia applications

e parallel operation on data vectors
(SIMD: Single instruction, multiple data)

e require in general one or two cycles to complete

¢ will concentrate here on SSE2
supported by P4, opteron and later athlon revisions

12 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE2 schematically

Operation OPacting on vector X and Y
both containing two doubles.

X1 0P Y1 X0 OP YO

13 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE?2 Instructions

e there are 8 MMXL28 Bit registers available: xmmO0-xmm?7
e Note that opteron has 16 MMXegisters

¢ special load instructions for packed doubles:
load from memory to MMXegisters

e special store instructions:
store a MMXegister to memory

e special instruction set for arithmetic operations on MMX
registers

e the special instructions can be used with inline assembly
(gcc) or with compiler specific functions (Intel compiler)

14 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE?2 example

e Suppose you want to use SSE?2 for:

for(i=0; i<20; i++) {
cli] = afi] + bli];
}

e Using inline assembly with gcc

e a,b,c are double arrays of length 20

16 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE?2 example

for(i=0; i<20; i+=2) {

__asm__ __ volatile_ (
"movapd %1, %%xmmO0 \n\t" \ /Noad ali]
"movapd %2, %%xmml \n\t" \ /lload bli]
"addpd %%xmm0, %%xmml \n\t* \ //add
"movapd %%xmm1, %0" \ //store in c[i]

o\

"=m" (c[i]) \ //output
o\

"m" (a[i]), \ /linput
"m” (b[i]));

18 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE2 example 2

Complex multiply a * b (b already in xmm3

"movsd %0, %%xmm6 \n\t" \ \\(a.re,-)

"movsd %1, %%xmm?7 \n\t" \ \\(a.im,-)

"unpcklpd %%xmm6, %%xmme6 \n\t" \ \\(a.re,a.re)

"unpcklpd %%xmm7, %%xmm7 \n\t" \ \\(a.im,a.im)

"movapd %%xmm3, %%xmmO0 \n\t" \ \\(b.re,b.im)

"mulpd %%xmm6, %%xmm3 \n\t" \ \\(a.re xb.re,are *b.im)
"mulpd %%xmm7, %%xmmO0 \n\t" \ \\(a.im *b.re,a.im *b.im)
"shufpd $0x1, %%xmmO0, %%xmmO0 \n\t" \

"xorpd %2, %%xmmO \n\t" \ \\ (-a.im *b.im,a.im xb.re)
"addpd %%xmm0, %%xmm3 \n\t" \

o\

\
'm" (Real(a)), \
"m" (Imag(a)), \
"m" (sign)

20 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE2 example 2

Complex multiply a « b

e shufpd swaps upper and lower double

e xorpd performs bitwise xor operation with mask: int
sign[4] = {0x0,0x80000000,0x0,0x0 h

22 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

Hiding Latency

e Every operation needs a certain number of cycles to finish

e movpd: 2 cycles
e addpd: 5 cycles

e Perform several independent operations on several,
different MMXegisters

"mulpd %%xmm6, %%xmm3 \n\t"
"mulpd %%xmm6, %%xmm4 \n\t"
"mulpd %%xmm6, %%xmm5 \n\t"
"mulpd %%xmm7, %%xmmO0 \n\t"

— — -

24 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

SSE2: Remarks

¢ all data must be aligned, see processor specific
documentation

¢ avoid too many load and store operations

¢ hand-tuned SSE2 code gives up to a factor 2 better
performance

¢ single precision instructions can give another factor of 2

e SSE3 makes complex arithmetics easier

e gives another =~ 30% improvement

3 Tuning for PC-clusters

Tuning for Single Node Performance Streaming SIMD extension

Documentation can be found...

Intel:
http://www.intel.com/products/processor/manuals/

AMD:
http://www.amd.com/us-en/Processors/TechnicalResour ces/
and then Microprocessor Tech Docs

GNU GCC info pages and manuals

See also one of the various SSE2 implementations of the Dirac
operator

26 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Memory and Cache Management

Cache is significantly faster than main memory

e data should be in the cache when needed for computations

e if possible data in the cache should be reused as often as
possible

¢ load and store operations should be reduced as much as
possible

e to reduce memory traffic

27 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Manual Prefetching

e data can be prefetched manually into the cache
e prefetching is done in parallel to computations

e cache is organised in cache lines
o prefetch operation will always prefetch a whole cache line

28 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Prefetch Example
Prefetch for one spinor with cache line 128 Byte long (P4)

asm__ _ volatile_ (

"prefetcht0 %0 \n\t" \

"prefetcht0 %1" \

N\

N\

"m" (*(((char *)(((ULI)(addr))& 0x7f)))), \
"m" (*(((char *)(((ULI)(addr))& 0x7f))+128))

)

¢ cache line length depends on CPU type

e ULI is here a shortcut for unsigned long int

30 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Prefetch Distance

prefetch distance: how far ahead to prefetch?

prefetch distance must be long enough for data being in
cache when needed

in fact: SSE2 performance depends strongly on prefetch
distance

optimal distance must be tried out
e gauge field about one p value in advance

e spinor field also about one y value in advance, after gauge

31 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Increase Data Re-usage

e e.g.: one application of Dirac operator:
e every gauge field is used twice

e every space-time element of source spinor is used 9 times

e possible solution: divide lattice in small blocks and process
the blocks one after the other

e so called strip-mining

¢ can significantly improve cache hit rate.

32 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Prefetch Streams

e if memory is read in successive order the processor can
enable hardware prefetching

¢ usually each processor supports several independent
prefetch streams

e example:
e Dirac operator is often applied on the same gauge
background many times (e.g. in iterative solver)

e make a (double) copy of gauge background in the same
order as used in the Dirac operator

e very easy to implement

e down side: more memory needed

33 Tuning for PC-clusters

Tuning for Single Node Performance
Memory and Cache

Single Precision Acceleration

e single precision arithmetic is about a factor of 2 faster on
32 Bit architectures

e single precision can be used in various places
¢ in certain stages of iterative solvers
e in the HMC for preconditioning
e in the HMC force computation

e care must be taken in the HMC: reversibility violations!

e 0n 64-Bit architectures other tricks possible, see later

34 Tuning for PC-clusters

Introduction

Tuning for Single Node Performance
Tuning Parallel Performance
Summary

Outline

Introduction

Tuning for Single Node Performance
Streaming SIMD extension
Memory and Cache

® Tuning Parallel Performance

Summary

35 Tuning for PC-clusters

Tuning Parallel Performance

Parallelisation with MPI

¢ Divide global lattice into equally sized sub-lattices
e every sub-lattice is assigned to one MPI process
e sub-lattices do overlap (boundary fields)

¢ the local Dirac operator acts as follows:

loo - lov-1 Co lo
lio - livoi C1 I3

lv_10 - l-1v-1 Cv_1 lv 1
0 0] 0 b

36 Tuning for PC-clusters

Tuning Parallel Performance

Parallelisation

e Every proc. holds local
lattice and boundary

e Every proc. sends inner
boundary and receives
outer boundary

e most can be done with
next-neighbour
communication

37 Tuning for PC-clusters

Tuning Parallel Performance

Parallelisation

e PC cluster usually have two network types:
e inter-node: shared memory

e extra-node: some (hopefully fast) network
e shared memory communication is (should be) faster

e the MPI driver should know about this

o therefore: let MPI set-up the processor grid
e Use MPI_Cart _create

e neighbouring processes can be obtained with
MPI_Cart _shift

38 Tuning for PC-clusters

Tuning Parallel Performance

Parallelisation: Standard Approach

e add boundary fields at “end” of local gauge and spinor
fields

o modify lookup tables to deal with boundaries
(instead of periodic boundary conditions)

e Dirac operator essentially unchanged as compared to the
serial code

e one Dirac operator application:
@ exchange gauge and spinor fields

® apply “serial” Dirac operator

39 Tuning for PC-clusters

Tuning Parallel Performance

MPI Performance

e Communication time depends on:
@ latency of the network
® bandwidth of the network

e latency is paid per transfer once
it is important in small sized data is communicated often

e time for data transfer depends on size of transfered data
is limiting if much data is communicated at once

40 Tuning for PC-clusters

Tuning Parallel Performance

Hiding Communication

MPI supports non-blocking communication

therefore: communication can overlap with computation

you can reorganise data such that e.g.
@ inner boundary is processed
® communication is initialised
® bulk lattice is processed

O finish communication

problem: some MPI implementations do not implement this

41 Tuning for PC-clusters

Tuning Parallel Performance

Half Spinor Communication

e Dirac operator times vector x = D o in three steps
@ project to a half Spinor ¢:

¢=P*%
® exchange ¢
® expand to full Spinor:

X = P2—>4¢

e Multiplication with U’s can be done before or after
communication (not shown)

42 Tuning for PC-clusters

Tuning Parallel Performance

Half Spinor Communication

amount of data to be communicated is halfed

latency of network stays the same (of course)

requires more load and store operations

will pay off if boundary to bulk ratio becomes too large

43 Tuning for PC-clusters

Tuning Parallel Performance

Single Precision ¢

e reduced precision: ¢ only single precision. All the rest in
double.

¢ reduces memory traffic significantly

¢ halves network traffic

e works also for serial code

e again: take care in the HMC

44 Tuning for PC-clusters

Tuning Parallel Performance

Exploiting Bi-directional Bandwidth

o fast networks usually provide bi-directional network
bandwidth

e if two processors share the same network card
e one processor can send while the other one receives data

¢ requires knowledge about processor grid

e you might need to influence this manually

45 Tuning for PC-clusters

Summary

Summary

e Tuning serial code
SSE/SSE2 improvement for PC’s

prefetching

data re-usage

single precision acceleration

e Tuning parallel performance
e overlap communication and computation
¢ “half spinor” construction

e single precision

46 Tuning for PC-clusters

Summary

Happy implementing ...!

47 Tuning for PC-clusters

	Introduction
	Tuning for Single Node Performance
	Streaming SIMD extension
	Memory and Cache

	Tuning Parallel Performance
	Summary

