
Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Tuning single node and network performance
on PC-clusters

C. Urbach

Division of Theoretical Physics
The University of Liverpool

Zeuthen, 27.11.2006

1 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Motivation

• almost everybody has a PC under his desk

• PC clusters are quite common nowadays

• some even have a fast network

So why not get the most out of them...?

2 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Outline

1 Introduction

2 Tuning for Single Node Performance
Streaming SIMD extension
Memory and Cache

3 Tuning Parallel Performance

4 Summary

3 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

PC-Clusters

In general

• nodes with 1 − 4 CPU’s each sharing memory

• Intel or AMD CPU’s:
P3, P4, Athlon, opteron, itanium

• O(1 − 10) GB memory per node
• nework:

• Gigabit ethernet
• some fast/low latency network like myrinet or infiniband

• GNU compilers and maybe more (intel, PGM,...)

• some MPI implementation: MPICH or LAM
with special drivers for the fast network

• some queueing system like OpenPBS

4 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

CPU and Memory (schematic)

a[i] = b[i] + c[i] a[i] = b[i] + c[i] a[i] = b[i] + c[i] a[i] = b[i] + c[i]
-

FPU
Instruction Pipeline

Main Memory

Cache

Register

-�

?6

5 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Memory Hierarchy

speed size

Register very fast very small

Cache fast small - medium

Main Memory slow large - very large

Floating Point Unit (FPU) operates only on registers

6 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Memory Hierarchy

• Loading data:
main memory cache registers.

• Loading into the Cache can be done in advance
(prefetching)

• Prefetching can be done by the hardware, if your data
structure allows for it (prefetch streams)

• prefetch streams can be enabled if you access data in
sequential order

• Prefetching can also be done by hand.

7 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Dirac Operator

• Dirac Operator:

D ψ(x) ≡
∑

x

{

(4 + m0)ψ(x)

+
∑

µ

[

Ux,µ(1 + γµ)ψ(x + µ̂)

+ U†
x,−µ

(1 − γµ)ψ(x − µ̂)
]}

• Optimise the operation:

U(1 ± γµ)ψ

8 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

U(1 ± γµ)

• (1 ± γµ)ψ has only two independent components

• example:

(1 + γ0)ψ =









1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

















ψ0

ψ1

ψ2

ψ3









=









ψ0 + ψ2

ψ1 + ψ3

ψ0 + ψ2

ψ1 + ψ3









• multiply only two components with Ux,µ

• allows for further improvement, see later

9 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

U(1 ± γµ)

• define (Projector to a half spinor):

P2 ≡









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









and
P4→2
±µ

= P2 (1 ± γµ)

• define similar: P2→4
±µ

• Therefore implement:

φ = Ux,µ (1 ± γµ) ψ = P2→4
±µ

Ux,µ P4→2
±µ

ψ

10 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Lookup Tables

• when performing the loop over x , we need next neighbours
of x

• can be computed on the fly

• can be computed once at the beginning and then stored in
lookup table nn[x][mu] :

• my experience: lookup tables work faster

• but don’t have too many of them...

11 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Vector Processing Units

• go under the names MMX, SSE, SSE2, SSE3,
3DNow!, Altivec, DoubleHummer, ...

• originally to speed up multimedia applications

• parallel operation on data vectors
(SIMD: Single instruction, multiple data)

• require in general one or two cycles to complete

• will concentrate here on SSE2
supported by P4, opteron and later athlon revisions

12 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 schematically
Operation OPacting on vector X and Y
both containing two doubles.

13 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 Instructions

• there are 8 MMX128 Bit registers available: xmm0-xmm7

• Note that opteron has 16 MMXregisters

• special load instructions for packed doubles:
load from memory to MMXregisters

• special store instructions:
store a MMXregister to memory

• special instruction set for arithmetic operations on MMX
registers

• the special instructions can be used with inline assembly
(gcc) or with compiler specific functions (Intel compiler)

14 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 example

• Suppose you want to use SSE2 for:

for(i=0; i<20; i++) {
c[i] = a[i] + b[i];

}

• Using inline assembly with gcc

• a,b,c are double arrays of length 20

16 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 example

for(i=0; i<20; i+=2) {
__asm__ __volatile__ (

"movapd %1, %%xmm0 \n\t" \ //load a[i]
"movapd %2, %%xmm1 \n\t" \ //load b[i]
"addpd %%xmm0, %%xmm1 \n\t" \ //add
"movapd %%xmm1, %0" \ //store in c[i]
: \
"=m" (c[i]) \ //output
: \
"m" (a[i]), \ //input
"m" (b[i]));

}

18 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 example 2
Complex multiply a ∗ b (b already in xmm3)

"movsd %0, %%xmm6 \n\t" \ \\(a.re,-)
"movsd %1, %%xmm7 \n\t" \ \\(a.im,-)
"unpcklpd %%xmm6, %%xmm6 \n\t" \ \\(a.re,a.re)
"unpcklpd %%xmm7, %%xmm7 \n\t" \ \\(a.im,a.im)
"movapd %%xmm3, %%xmm0 \n\t" \ \\(b.re,b.im)
"mulpd %%xmm6, %%xmm3 \n\t" \ \\(a.re * b.re,a.re * b.im)
"mulpd %%xmm7, %%xmm0 \n\t" \ \\(a.im * b.re,a.im * b.im)
"shufpd $0x1, %%xmm0, %%xmm0 \n\t" \
"xorpd %2, %%xmm0 \n\t" \ \\ (-a.im * b.im,a.im * b.re)
"addpd %%xmm0, %%xmm3 \n\t" \
: \
: \
"m" (Real(a)), \
"m" (Imag(a)), \
"m" (sign)

20 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2 example 2

Complex multiply a ∗ b

• shufpd swaps upper and lower double

• xorpd performs bitwise xor operation with mask: int
sign[4] = {0x0,0x80000000,0x0,0x0 };

22 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Hiding Latency

• Every operation needs a certain number of cycles to finish
• movpd: 2 cycles
• addpd : 5 cycles
• ...

• Perform several independent operations on several,
different MMXregisters

...
"mulpd %%xmm6, %%xmm3 \n\t" \
"mulpd %%xmm6, %%xmm4 \n\t" \
"mulpd %%xmm6, %%xmm5 \n\t" \
"mulpd %%xmm7, %%xmm0 \n\t" \
...

24 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

SSE2: Remarks

• all data must be aligned, see processor specific
documentation

• avoid too many load and store operations

• hand-tuned SSE2 code gives up to a factor 2 better
performance

• single precision instructions can give another factor of 2

• SSE3 makes complex arithmetics easier

• gives another ≈ 30% improvement

25 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Documentation can be found...

Intel:
http://www.intel.com/products/processor/manuals/

AMD:
http://www.amd.com/us-en/Processors/TechnicalResour ces/

and then Microprocessor Tech Docs

GNU GCC info pages and manuals

See also one of the various SSE2 implementations of the Dirac
operator

26 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Memory and Cache Management

Cache is significantly faster than main memory

• data should be in the cache when needed for computations

• if possible data in the cache should be reused as often as
possible

• load and store operations should be reduced as much as
possible

• to reduce memory traffic

27 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Manual Prefetching

• data can be prefetched manually into the cache

• prefetching is done in parallel to computations

• cache is organised in cache lines

• prefetch operation will always prefetch a whole cache line

28 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Prefetch Example

Prefetch for one spinor with cache line 128 Byte long (P4)

__asm__ __volatile__ (
"prefetcht0 %0 \n\t" \
"prefetcht0 %1" \
: \
: \
"m" (* (((char *)(((ULI)(addr))&˜0x7f)))), \
"m" (* (((char *)(((ULI)(addr))&˜0x7f))+128))

)

• cache line length depends on CPU type

• ULI is here a shortcut for unsigned long int

30 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Prefetch Distance

• prefetch distance: how far ahead to prefetch?

• prefetch distance must be long enough for data being in
cache when needed

• in fact: SSE2 performance depends strongly on prefetch
distance

• optimal distance must be tried out

• gauge field about one µ value in advance

• spinor field also about one µ value in advance, after gauge

31 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Increase Data Re-usage

• e.g.: one application of Dirac operator:

• every gauge field is used twice

• every space-time element of source spinor is used 9 times

• possible solution: divide lattice in small blocks and process
the blocks one after the other

• so called strip-mining

• can significantly improve cache hit rate.

32 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Prefetch Streams

• if memory is read in successive order the processor can
enable hardware prefetching

• usually each processor supports several independent
prefetch streams

• example:
• Dirac operator is often applied on the same gauge

background many times (e.g. in iterative solver)

• make a (double) copy of gauge background in the same
order as used in the Dirac operator

• very easy to implement

• down side: more memory needed

33 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Streaming SIMD extension
Memory and Cache

Single Precision Acceleration

• single precision arithmetic is about a factor of 2 faster on
32 Bit architectures

• single precision can be used in various places
• in certain stages of iterative solvers

• in the HMC for preconditioning

• in the HMC force computation

• care must be taken in the HMC: reversibility violations!

• on 64-Bit architectures other tricks possible, see later

34 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Outline

1 Introduction

2 Tuning for Single Node Performance
Streaming SIMD extension
Memory and Cache

3 Tuning Parallel Performance

4 Summary

35 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Parallelisation with MPI

• Divide global lattice into equally sized sub-lattices

• every sub-lattice is assigned to one MPI process

• sub-lattices do overlap (boundary fields)

• the local Dirac operator acts as follows:













l0,0 ... l0,V−1 c0

l1,0 ... l1,V−1 c1

.

lV−1,0 ... lV−1,V−1 cV−1

0 ... 0 0













·













l0
l1
.

lV−1

b













36 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Parallelisation

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

• Every proc. holds local
lattice and boundary

• Every proc. sends inner
boundary and receives
outer boundary

• most can be done with
next-neighbour
communication

37 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Parallelisation

• PC cluster usually have two network types:

• inter-node: shared memory

• extra-node: some (hopefully fast) network

• shared memory communication is (should be) faster

• the MPI driver should know about this

• therefore: let MPI set-up the processor grid

• Use MPI Cart create

• neighbouring processes can be obtained with
MPI Cart shift

38 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Parallelisation: Standard Approach

• add boundary fields at “end” of local gauge and spinor
fields

• modify lookup tables to deal with boundaries
(instead of periodic boundary conditions)

• Dirac operator essentially unchanged as compared to the
serial code

• one Dirac operator application:
1 exchange gauge and spinor fields

2 apply “serial” Dirac operator

39 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

MPI Performance

• Communication time depends on:

1 latency of the network

2 bandwidth of the network

• latency is paid per transfer once
it is important in small sized data is communicated often

• time for data transfer depends on size of transfered data
is limiting if much data is communicated at once

40 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Hiding Communication

• MPI supports non-blocking communication

• therefore: communication can overlap with computation

• you can reorganise data such that e.g.

1 inner boundary is processed

2 communication is initialised

3 bulk lattice is processed

4 finish communication

• problem: some MPI implementations do not implement this

41 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Half Spinor Communication

• Dirac operator times vector χ = D ψ in three steps
1 project to a half Spinor φ:

φ = P4→2ψ

2 exchange φ

3 expand to full Spinor:

χ = P2→4φ

• Multiplication with U ’s can be done before or after
communication (not shown)

42 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Half Spinor Communication

• amount of data to be communicated is halfed

• latency of network stays the same (of course)

• requires more load and store operations

• will pay off if boundary to bulk ratio becomes too large

43 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Single Precision φ

• reduced precision: φ only single precision. All the rest in
double.

• reduces memory traffic significantly

• halves network traffic

• works also for serial code

• again: take care in the HMC

44 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Exploiting Bi-directional Bandwidth

• fast networks usually provide bi-directional network
bandwidth

• if two processors share the same network card

• one processor can send while the other one receives data

• requires knowledge about processor grid

• you might need to influence this manually

45 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Summary

• Tuning serial code
• SSE/SSE2 improvement for PC’s

• prefetching

• data re-usage

• single precision acceleration

• Tuning parallel performance
• overlap communication and computation

• “half spinor” construction

• single precision

46 Tuning for PC-clusters

Introduction
Tuning for Single Node Performance

Tuning Parallel Performance
Summary

Happy implementing ...!

47 Tuning for PC-clusters

	Introduction
	Tuning for Single Node Performance
	Streaming SIMD extension
	Memory and Cache

	Tuning Parallel Performance
	Summary

