Outline:

Hubert Simma

DESY

[] Motivation

[1 Rough Estimates

[1 Simple Performance Modeling

[Hardware Model

[Analysis of Computational Tasks
[Wilson-Dirac Operator

H. Simma, LaP 2006

formal or
mathematical
solution

Algorithm vs. Implementation

sequence of computer

= computational o=

alzorithm tasks implementation code

Computational tasks:

e different levels of granularity, e.g.

— update U

— compute plaquettes or MD forces

— solve Ax = y or Dirac matrix x vector

— basic linear algebra, random numbers, . . .

e often described by pseudo-code

e NO reference to specific programming language
or machine architecture

H. Simma, LaP 2006

formal or
mathematical
solution

Algorithm vs. Implementation

sequence of

» compuiational . COMpUler

alzorithm tasks implementation code

Implementation:

e high-level coding (human)

— data representation

— memory layout

— selection and scheduling of (macro-)operations
— management of communications

e low-level code generation (compiler)

— management of memory accesses
— register allocation
— selection and scheduling of (micro-)instructions

H. Simma, LaP 2006

Why benchmarking and modeling?

May want to improve or may not (yet) have available

e algorithm
e application code (high-level implementation)
e system software (low-level implementation)

e hardware

Key Question:

How much wall-clock time is (expected to be) required
to solve a given task on a given architecture?

algorithm implementation
l l
T=f (task : code , machine)

H. Simma, LaP 2006

Run-time profiling

routine calls time
Dirac operator (3 variants) 80844 58 %
Linear algebra (3 routines) 60736 26 %
Gauge forces + update 320 8%
Global sum (4 x 8 x 8 nodes, 128 bit) 83554 0.4 %
Others (= 70 routines) 7 %

provides

e algorithmic cost, i.e. number of computational tasks
e CPU cost, i.e. time for computational tasks

e hints for optimisations (of algorithm, implementation, or machine)

H. Simma, LaP 2006

Application signatures

Total Computing Cost

Nops = # FP operations

Computing vs. Memory Access

arithmetic operations

Ro s =
P # mMemory acCCessess

Communication Requirement

__ 7 remote accesses
Rrem —

memory accessess

H. Simma, LaP 2006

Examples of LQCD tasks (kernels):

kernel Nops Rops Ryem
flop/site flop/cword

linear combination a - x + vy 8 2.6 0

dot product (z,y) - 8 4 2G|V

norm ||z||? N 4 4 1G/V

SU(N) matrix x vector N(8N —2) 8]<,V—+_22 0

Dirac operator D¢ 1320 > 7 AV

o V=1L,xL,xL,x Ly is the 4-d lattice volume

e A=) A, or A= max A; (depending on network architecture)
and A, is the number of surface sites in direction 2

e (G = communications to perform a global sum
(with or without broadcast of result)

[I refined analysis . . .

H. Simma, LaP 2006

Hardware characteristics

Memory System

~ flops
Pmem = 4 andwidth

[flop/byte]

Communication Network

network bandwidth
memory bandwidth

pnet =

Balance: Application vs. Hardware

Rops ~ Pmem and Rrem ~ Pnet

[] refined model . . .

H. Simma, LaP 2006

A simple Performance Model

Execution time

Consider (micro-)tasks p of different devices,
e.g. arithmetic units, memory ports, communications, . . .

Terec = ml?x T,

e assumes concurrency of different tasks (otherwise split tasks)

e ignores data dependencies between tasks
(assume optimised software pipelining/prefetch)

e may include or neglect pipeline latencies

H. Simma, LaP 2006

Upper bound (sequential execution)

Texec < Z T,u
7

Efficiency

Tpeak
Texec

€ = with Theqr = Nfzop/ﬁFP

H. Simma, LaP 2006

A simple Hardware Model

What describes a computer architecture?

Set of hardware devices/units for:

control (of data and program flow)

storage of data (and code)

— memory
— cache(s)
— registers
— buffers, fifos, flip-flops, ...

processing/transport (of data)

— arithmetic operations (usually pipelined)
— storage access (hopefully pipelined)

— combinatorical logics

— buses

H. Simma, LaP 2006

10

Hardware structure:

l.e. a graph with

e vertices = storage devices

e edges = data paths through processing/transport devices

(> arithmetic units

registers | R

memory bus

memory m

H. Simma, LaP 2006

11

Hardware structure:

l.e. a graph with

e vertices = storage devices

e edges = data paths through processing/transport devices

network

H. Simma, LaP 2006

12

Hardware structure:

l.e. a graph with

e vertices = storage devices

e edges = data paths through processing/transport devices

H. Simma, LaP 2006

13

What are the hardware parameters?
(to be determined from data sheets or micro-benchmarks)

Storage devices:

o; = storage size

Data units: bit, byte, fword, cword, . . .

Processing/transport devices:

ISA = instruction set architecture
B; = bandwidth (data throughput/time)

A; = latency (delay between input and first output)

Time units: nsec, T (clock cycle)

N.B.: For storage access one might need: A = Ay + é(a,a’,n,n’)

H. Simma, LaP 2006

14

Hardware examples:

parameter unit PC BG/L APE
feik [GHZ] 2 0.7 0.14
data format [1 word] S d d
ﬁRR [ﬂOp/C”(] 4 s 8d 8 d
oR [word] | < 100 64 512
cache L2 L3 —
Bre [word /clk] 4 2 —
e [WOFd] 05 M 05 M —
Bom [word /clk] 1/8 1 2
ACM [clK] > 100 > 30 ~ 20
Bpp/ [WOI’d/Clk] 0.1 0.03 x 16 0.1 x 12

H. Simma, LaP 2006

15

Analysis of Computational Tasks (and their Implementation)

Instruction Match
Matching between required operations and machine instructions (ISA)

e single vs. double precision

e real vs. complex

e multiply/add vs. MulAdd

e alignment constraints (of vector or “SIMD" instructions)

Example: ISA has only complex MulAdd (possibly with complex conjugation)

kernel flop needed MulAdd used Ernar
sum of real numbers N N 12.5 %
linear combination a -z + vy N x 8 N 100 %
dot product (z,y) N x8—2 N ~100 %
norm ||z||? N N x 4 N 50 %
Dirac operator D¢ 166 x 8 276 60 %

H. Simma, LaP 2006

Data Flow
Consider dependency graph of instructions (DAG = directed acyclic graph)

e vertices = (groups of) instructions

e edges = (intermediate) data = partial order

Example:
N N/K
S = E X; — Sn = § LInK+i

[Critical path ~ “height” = minimal latency-limited execution time

H. Simma, LaP 2006

17

Example:

Z=T+Y
O
T o
Dh‘-'"‘“'--_.___
o— Y
e
i ‘o
I:I—\ o~
e
“causal cuts” = possible time-order (scheduling)

[1 Flow accross cut = storage requirement

H. Simma, LaP 2006

18

Example:

FFT

DFT

/.r..r rf;....u......h.nuv .\h_._-.._rr.. ..
CREPERA X 7

- I\._.nmd...__...“ S u“..\‘...l... a g rf{\}r
DREEE S S

72 5% -
B

$ _‘.ﬂ.-....#i.\ X R
ZEEAN S

arbitrary cuts = possible parallelisations

[1 Flow accross cut = communication requirement

19

H. Simma, LaP 2006

Information Exchange

Ixy(N,o) = data exchange for specific computational task of size N
between computer sub-systems X and Y with storage ox

where X, Y = registers (R), memory (M), cache (C), processors (P, P’), . ..
More explicit: For one or more implementations compute separately

e /xy(N)=- bandwidth requirements

e Sx(IN) = storage requirements

Execution time estimate:

Txy = Ixy - Bxy + O(Axy)

(if Sx < ox, otherwise split tasks)

N.B.:

Nops ~ IRR) Rops —

H. Simma, LaP 2006

20

Optimisation Strategies and Tradeoffs

Try to combine, re-arrange or modify computational tasks
to reduce data flow through time-critical paths

= typical conflicts:

e Spvs. Irc (1/0O overhead)
e Sc vs. Ioys (cache misses)

e Sy vs. Ippr (communication overhead)

H. Simma, LaP 2006

21

Example: matrix x vector

yi:ZMijUj (’L,]Zl,,N)
J

Implementation without cache

IRM —_— 2N2—|—N

Optimally cached implementation

Sc < 1...2N

Icyy = N?4+2N
Block-wise implementation
Sc < 2B
Iem = N?2+42N+(%-1) 2N

H. Simma, LaP 2006

22

Analysis of the Wilson-Dirac Operator

Hopping term: %
4 @ =@
(Dl =) (U, w)(L = vu)(a + 1) + -}

u=1
Implementation without cache
Sc = 0
Ipp/v = (841)|¢|+8|U = 180 cword

(v = number of lattice sites, |¢| = size of ¢ per site)

H. Simma, LaP 2006

%

23

Optimally cached implementation

Sc/v = 1|¢| +4|U] = 48 cword
Ieyv /v = 2|¢| + 4|U| = 60 cword
Irc/v = B+ 1)|¢|+8|U| = 180 cword

Partially cached implementation

e Work on 4-d sub-lattices with v" = I}, x I} x I/, X I} sites and

a;EU’Z%

sites on surfaces in positive direction

e Holding all sites of sub-lattice in cache requires

Sc/v > 1|¢|+4|U]
Icpu/v = 20| +4|U| + (2]¢9| + |U|) - a’ /0

e For minimal surface a/, /v’ choose I}, =1}, =1/, =1; (= da /v' =4/l})

H. Simma, LaP 2006

24

Parallel implementation

Local lattice on each node:
U=y Xy X1, X[

®
Sites on positive surfaces of local lattice: V
O
1 on - .b:....ﬁ 9
@

Ippr = (2|p| +|U|) - 2a4 = 66 - as cword

Pre-distributed U

Prepare auxiliary array U'(x, pu) <+ U(x + f1, i)
to guarantee that all U fields are available locally when needed

Ippr = (2|qb\ +O()|U|) 2a4 =~ 48 -ay cword

1
N
but increased storage requirement Sys/v = Ny|o| + (4 +d) - |U]

H. Simma, LaP 2006 25

Intermediate 2-spinors

DAG of hopping term in one direction:

H. Simma, LaP 2006

26

e Projection on 2-spinors:
(@) = (1F) - o(2)

e Multiplication with pre-distributed U before or after communication

q(2) = U(..., 1) - py; (x £ o)

e Reconstruction of 4-spinor:

= reduced communications

1
N;

Ippr = (1|¢’ +O(

but increased register 1/O to cache (or memory)

Irc/v = (1+5+241)|9|+8|U| =
Sc/v > 3|9l =

H. Simma, LaP 2006

)|U|) ay ~ 24

ay cword

192 cword
48 cword

27

lterative solvers:

Examples at algorithmic level

Combine differnt point-operations while data in registers/cache

Example:

e compute locally

° 3<—7“—|—5-8
e g— A-s
e global (s, q)

(r,r)
® set v +— (5.9)

Ioyp /v ="T|9|

s «— r+p3-s
g «— A-s
(S7Q)loc
[]
e compute global (s,q) and set
(r,7)
TG
] Ionm /v = 49|

H. Simma, LaP 2006

28

Even-odd peconditioning:

N
o Icm, Sc, Sy ~ Nglo| + Nu|U| — 2| + Ny|U|
e might keep some U in registers/cache for D.,D,.

e might work on 5 time slices

Schwarz Alternating Procedure:

e natural decomposition into cache-friendly domains

1
Nyr

® [ppr— Ipp

H. Simma, LaP 2006

29

Summary

Simple methodology for performance modeling based on

e general hardware model parametrized by

— storage sizes
— bandwidths
— latencies

e analysis of computational tasks in terms of

— instruction and storage requirements
— data dependencies between operations
— information exchange between hardware sub-systems

can be applied at different levels accuracy

may help to select/improve

— algorithms
— implementations
— system software and hardware

H. Simma, LaP 2006

30

