Analysis and Modeling of the Performance of LQCD Kernels

Hubert Simma

DESY

Outline:

- Motivation
- □ Rough Estimates
- □ Simple Performance Modeling
- □ Hardware Model
- □ Analysis of Computational Tasks
- □ Wilson-Dirac Operator

Algorithm vs. Implementation

Algorithm vs. Implementation

Why benchmarking and modeling?

May want to improve or may not (yet) have available

- algorithm
- application code (high-level implementation)
- system software (low-level implementation)
- hardware

Key Question:

How much wall-clock time is (expected to be) required to solve a given task on a given architecture?

$$\begin{array}{ccc} \text{algorithm} & \text{implementation} \\ \downarrow & \downarrow \\ \mathbf{T} = \mathbf{f} \begin{pmatrix} & \text{task} & , & \text{code} & , & \text{machine} \end{pmatrix} \end{pmatrix}$$

Run-time profiling

routine	calls	time
Dirac operator (3 variants)	80844	58 %
Linear algebra (3 routines)	60736	26 %
Gauge forces $+$ update	320	8 %
Global sum ($4 imes 8 imes 8$ nodes, 128 bit)	83554	0.4 %
Others (\approx 70 routines)		7 %

provides

- algorithmic cost, i.e. number of computational tasks
- CPU cost, i.e. time for computational tasks
- hints for optimisations (of algorithm, implementation, or machine)

Application signatures

Total Computing Cost

 $N_{ops} \equiv \#$ FP operations

Computing vs. Memory Access

$$R_{ops} \equiv \frac{\# \text{ arithmetic operations}}{\# \text{ memory accessess}}$$

Communication Requirement

$$R_{rem} \equiv \frac{\# \text{ remote accesses}}{\# \text{ memory accessess}}$$

Examples of LQCD tasks (kernels):

kernel	N_{ops}	R_{ops}	R_{rem}
	flop/site	flop/cword	
linear combination $a \cdot \underline{x} + y$	8	2.6	0
dot product (\underline{x}, y)	8	4	2G/V
norm $ x ^2$	4	4	1G/V
SU(N) matrix $ imes$ vector	N(8N-2)	$\frac{8N-2}{N+2}$	0
Dirac operator $D\phi$	1320	≥ 7	A/V

- $V = L_x \times L_y \times L_z \times L_t$ is the 4-d lattice volume
- $A = \sum A_i$ or $A = \max A_i$ (depending on network architecture) and A_i is the number of surface sites in direction i
- G = communications to perform a global sum (with or without broadcast of result)
- refined analysis . . .

Hardware characteristics

Memory System

$$\rho_{mem} \equiv \frac{\text{flops}}{\text{bandwidth}} \quad [flop/byte]$$

Communication Network

 $\rho_{net} \equiv \frac{\text{network bandwidth}}{\text{memory bandwidth}}$

Balance: Application vs. Hardware

$$R_{ops} \approx \rho_{mem}$$
 and $R_{rem} \approx \rho_{net}$

refined model . . .

A simple Performance Model

Execution time

Consider (micro-)tasks μ of different devices, e.g. arithmetic units, memory ports, communications, . . .

$$T_{exec} \ge \max_{\mu} T_{\mu}$$

- assumes concurrency of different tasks (otherwise split tasks)
- ignores data dependencies between tasks (assume optimised software pipelining/prefetch)
- may include or neglect pipeline latencies

Upper bound (sequential execution)

$$T_{exec} \le \sum_{\mu} T_{\mu}$$

Efficiency

$$\epsilon \equiv \frac{T_{peak}}{T_{exec}}$$
 with $T_{peak} = N_{flop}/\beta_{FP}$

A simple Hardware Model

What describes a computer architecture?

Set of hardware devices/units for:

- control (of data and program flow)
- storage of data (and code)
 - memory
 - cache(s)
 - registers
 - buffers, fifos, flip-flops, ...
- processing/transport (of data)
 - arithmetic operations (usually pipelined)
 - storage access (hopefully pipelined)
 - combinatorical logics
 - buses

Hardware structure:

- i.e. a graph with
- vertices = storage devices
- edges = data paths through processing/transport devices

Hardware structure:

- i.e. a graph with
- vertices = storage devices
- edges = data paths through processing/transport devices

Hardware structure:

- i.e. a graph with
- vertices = storage devices
- edges = data paths through processing/transport devices

What are the hardware parameters?

(to be determined from data sheets or micro-benchmarks)

Storage devices:

 $\sigma_i = \text{storage size}$

Data units: bit, byte, fword, cword, . . .

Processing/transport devices:

 ISA = instruction set architecture

- β_i = bandwidth (data throughput/time)
- λ_i = latency (delay between input and first output)

Time units: nsec, T_{clk} (clock cycle)

N.B.: For storage access one might need: $\lambda = \lambda_0 + \delta(a, a', n, n')$

Hardware examples:

parameter	unit	PC	BG/L	APE
f_{clk}	[GHz]	2	0.7	0.14
data format	[1 word]	S	d	d
eta_{RR}	[flop/clk]	4 s	8 d	8 d
σ_R	[word]	≤ 100	64	512
cache		L2	L3	
β_{RC}	[word/clk]	4	2	—
σ_C	[word]	0.5 M	0.5 M	_
β_{CM}	[word/clk]	1/8	1	2
λ_{CM}	[clk]	≥ 100	≥ 30	≈ 20
$\beta_{PP'}$	[word/clk]	0.1	0.03×16	0.1×12
$\lambda_{PP'}$	[clk]	≥ 2000	≈ 700	≈ 40

Analysis of Computational Tasks (and their Implementation)

Instruction Match

Matching between required operations and machine instructions (ISA)

- single vs. double precision
- real vs. complex
- multiply/add vs. MulAdd
- alignment constraints (of vector or "SIMD" instructions)
- . . .

Example: ISA has only complex MulAdd (possibly with complex conjugation)

kernel	flop needed	MulAdd used	ϵ_{max}
sum of real numbers	N	N	12.5 %
linear combination $a \cdot \underline{x} + y$	$N \times 8$	N	100~%
dot product (\underline{x}, y)	$N \times 8 - 2$	N	pprox100 %
norm $ x ^2$	$N \times 4$	N	50 %
Dirac operator $D\phi$	166 imes 8	276	60 %

Data Flow

Consider dependency graph of instructions (DAG = directed acyclic graph)

- vertices = (groups of) instructions
- edges = (intermediate) data \Rightarrow partial order

Example:

☆ Critical path \simeq "height" \Rightarrow minimal latency-limited execution time

Example:

"causal cuts" = possible time-order (scheduling) \Rightarrow Flow accross cut \Rightarrow storage requirement Example:

arbitrary cuts = possible parallelisations

 \checkmark Flow accross cut \Rightarrow communication requirement

Information Exchange

 $I_{XY}(N,\sigma) \equiv \quad \text{data exchange for specific computational task of size } N$ between computer sub-systems X and Y with storage σ_X

where X, Y = registers (R), memory (M), cache (C), processors (P, P'), ...

More explicit: For one or more implementations compute separately

- $I_{XY}(N) \Rightarrow$ bandwidth requirements
- $S_X(N) \Rightarrow$ storage requirements

Execution time estimate:

$$T_{XY} \approx I_{XY} \cdot \beta_{XY} + O(\lambda_{XY})$$

(if $S_X < \sigma_X$, otherwise split tasks)

N.B.:

$$N_{ops} \sim I_{RR}$$
, $R_{ops} = \frac{I_{RR}}{I_{RM}}$, $R_{rem} = \frac{I_{PP'}}{I_{RM}}$

Optimisation Strategies and Tradeoffs

Try to combine, re-arrange or modify computational tasks to reduce data flow through time-critical paths

 \Rightarrow typical conflicts:

- S_R vs. I_{RC} (I/O overhead)
- S_C vs. I_{CM} (cache misses)
- S_M vs. $I_{PP'}$ (communication overhead)

Example: matrix \times vector

$$y_i = \sum_j M_{ij} v_j \quad (i, j = 1, \dots, N)$$

Implementation without cache

$$S_C = 0$$

$$I_{RM} = 2N^2 + N$$

	_
	_
	_
	_
i 1	

Optimally cached implementation

$$S_C \leq 1 \dots 2N$$
$$I_{CM} = N^2 + 2N$$

Block-wise implementation

$$S_C \leq 2B$$

$$I_{CM} = N^2 + 2N + \left(\frac{N}{B} - 1\right) \cdot 2N$$

	H

Analysis of the Wilson-Dirac Operator

Hopping term:

$$[D\phi]_x \equiv \sum_{\mu=1}^4 \{ U(x,\mu)(1-\gamma_{\mu})\phi(x+\hat{\mu}) + \cdots \}$$

Implementation without cache

$$S_C = 0$$

 $I_{RM}/v = (8+1)|\phi| + 8|U| = 180 \ cword$

 $(v = \text{number of lattice sites, } |\phi| = \text{size of } \phi \text{ per site})$

Optimally cached implementation

$$S_C/v = 1|\phi| + 4|U| = 48 \ cword$$

$$I_{CM}/v = 2|\phi| + 4|U| = 60 \ cword$$

$$I_{RC}/v = (8+1)|\phi| + 8|U| = 180 \ cword$$

Partially cached implementation

• Work on 4-d sub-lattices with $v' \equiv l'_x \times l'_y \times l'_z \times l'_t$ sites and

$$a'_{+} \equiv v' \sum_{i} \frac{1}{l'_{i}}$$

sites on surfaces in positive direction

• Holding all sites of sub-lattice in cache requires

 $S_C/v' \geq 1|\phi| + 4|U|$ $I_{CM}/v = 2|\phi| + 4|U| + (2|\phi| + |U|) \cdot a'_+/v'$

• For minimal surface a'_+/v' choose $l'_x = l'_y = l'_z = l'_t$ $(\Rightarrow a'_+/v' = 4/l'_t)$

Parallel implementation

Local lattice on each node:

$$v \equiv l_x \times l_y \times l_z \times l_t$$

Sites on positive surfaces of local lattice:

$$a_{+} \equiv v \sum_{k:l_{k} \neq L_{k}} \frac{1}{l_{k}}$$

$$I_{PP'} = (2|\phi| + |U|) \cdot 2a_{+} = 66 \cdot a_{+} \ cword$$

<u>Pre-distributed U</u>

Prepare auxiliary array $U'(x,\mu) \leftarrow U(x+\hat{\mu},\mu)$ to guarantee that all U fields are available locally when needed

$$I_{PP'} = \left(2|\phi| + O\left(\frac{1}{N_{it}}\right)|U|\right) \cdot 2a_+ \approx 48 \cdot a_+ \ cword$$

but increased storage requirement $S_M/v = N_{\phi}|\phi| + (4+d) \cdot |U|$

DAG of hopping term in one direction:

• Projection on 2-spinors:

$$p^{\pm}_{\mu}(x) = (1 \mp \gamma_{\mu}) \cdot \phi(x)$$

• Multiplication with pre-distributed U before or after communication

$$q^{\pm}_{\mu}(x) = U(\dots,\mu) \cdot p^{\pm}_{\mu}(x \pm \hat{\mu})$$

• Reconstruction of 4-spinor:

$$\phi'(x) = \sum_{\mu} \left\{ R^+_{\mu} (q^+_{\mu}(x)) + R^-_{\mu} (q^-_{\mu}(x)) \right\}$$

 \Rightarrow reduced communications

$$I_{PP'} = \left(1|\phi| + O\left(\frac{1}{N_{it}}\right)|U|\right) \cdot 2a_+ \approx 24 \cdot a_+ \ cword$$

but increased register I/O to cache (or memory)

$$I_{RC}/v = (1 + \frac{8}{2} + \frac{8}{2} + 1)|\phi| + 8|U| = 192 \ cword$$

$$S_C/v \ge \frac{8}{2}|\phi| = 48 \ cword$$

Examples at algorithmic level

Iterative solvers:

Combine differnt point-operations while data in registers/cache

Example:

Even-odd peconditioning:

- $I_{CM}, S_C, S_M \sim N_{\phi} |\phi| + N_U |U| \to \frac{N_{\phi}}{2} |\phi| + N_U |U|$
- might keep some U in registers/cache for $D_{eo}D_{oe}$
- might work on 5 time slices

Schwarz Alternating Procedure:

- natural decomposition into cache-friendly domains
- $I_{PP'} \rightarrow \frac{1}{N_{MR}} I_{PP'}$

Summary

Simple methodology for performance modeling based on

- general hardware model parametrized by
 - storage sizes
 - bandwidths
 - latencies
- analysis of computational tasks in terms of
 - instruction and storage requirements
 - data dependencies between operations
 - information exchange between hardware sub-systems
- ... can be applied at different levels accuracy
- ... may help to select/improve
 - algorithms
 - implementations
 - system software and hardware