
Analysis and Modeling of the
Performance of LQCD Kernels

Hubert Simma

DESY

Outline:
❑ Motivation
❑ Rough Estimates
❑ Simple Performance Modeling
❑ Hardware Model
❑ Analysis of Computational Tasks
❑ Wilson-Dirac Operator

H. Simma, LaP 2006

Algorithm vs. Implementation

Computational tasks:

• different levels of granularity, e.g.

– update U
– compute plaquettes or MD forces
– solve Ax = y or Dirac matrix × vector
– basic linear algebra, random numbers, . . .

• often described by pseudo-code

• NO reference to specific programming language
or machine architecture

H. Simma, LaP 2006 1

Algorithm vs. Implementation

Implementation:

• high-level coding (human)

– data representation
– memory layout
– selection and scheduling of (macro-)operations
– management of communications

• low-level code generation (compiler)

– management of memory accesses
– register allocation
– selection and scheduling of (micro-)instructions

H. Simma, LaP 2006 2

Why benchmarking and modeling?

May want to improve or may not (yet) have available

• algorithm

• application code (high-level implementation)

• system software (low-level implementation)

• hardware

Key Question:

How much wall-clock time is (expected to be) required
to solve a given task on a given architecture?

algorithm implementation
↓ ↓

T = f
(

task , code , machine
)

H. Simma, LaP 2006 3

Run-time profiling

routine calls time
Dirac operator (3 variants) 80844 58 %
Linear algebra (3 routines) 60736 26 %
Gauge forces + update 320 8 %
Global sum (4× 8× 8 nodes, 128 bit) 83554 0.4 %
Others (≈ 70 routines) 7 %

provides

• algorithmic cost, i.e. number of computational tasks

• CPU cost, i.e. time for computational tasks

• hints for optimisations (of algorithm, implementation, or machine)

H. Simma, LaP 2006 4

Application signatures

Total Computing Cost
Nops ≡ # FP operations

Computing vs. Memory Access

Rops ≡
arithmetic operations

memory accessess

Communication Requirement

Rrem ≡
remote accesses

memory accessess

H. Simma, LaP 2006 5

Examples of LQCD tasks (kernels):

kernel Nops Rops Rrem

flop/site flop/cword
linear combination a · x + y 8 2.6 0
dot product (x, y) 8 4 2G/V
norm ||x||2 4 4 1G/V

SU(N) matrix × vector N(8N − 2) 8N−2
N+2 0

Dirac operator Dφ 1320 ≥ 7 A/V

• V = Lx × Ly × Lz × Lt is the 4-d lattice volume

• A =
∑

Ai or A = maxAi (depending on network architecture)
and Ai is the number of surface sites in direction i

• G = communications to perform a global sum
(with or without broadcast of result)

➠ refined analysis . . .

H. Simma, LaP 2006 6

Hardware characteristics

Memory System

ρmem ≡
flops

bandwidth
[flop/byte]

Communication Network

ρnet ≡
network bandwidth
memory bandwidth

Balance: Application vs. Hardware

Rops ≈ ρmem and Rrem ≈ ρnet

➠ refined model . . .

H. Simma, LaP 2006 7

A simple Performance Model

Execution time

Consider (micro-)tasks µ of different devices,
e.g. arithmetic units, memory ports, communications, . . .

Texec ≥ max
µ

Tµ

• assumes concurrency of different tasks (otherwise split tasks)

• ignores data dependencies between tasks
(assume optimised software pipelining/prefetch)

• may include or neglect pipeline latencies

H. Simma, LaP 2006 8

Upper bound (sequential execution)

Texec ≤
∑

µ

Tµ

Efficiency

ε ≡ Tpeak

Texec
with Tpeak = Nflop/βFP

H. Simma, LaP 2006 9

A simple Hardware Model

What describes a computer architecture?

Set of hardware devices/units for:

• control (of data and program flow)

• storage of data (and code)

– memory
– cache(s)
– registers
– buffers, fifos, flip-flops, ...

• processing/transport (of data)

– arithmetic operations (usually pipelined)
– storage access (hopefully pipelined)
– combinatorical logics
– buses

H. Simma, LaP 2006 10

Hardware structure:

i.e. a graph with

• vertices = storage devices

• edges = data paths through processing/transport devices

arithmetic units

registers

memory bus

memory

H. Simma, LaP 2006 11

Hardware structure:

i.e. a graph with

• vertices = storage devices

• edges = data paths through processing/transport devices

network

H. Simma, LaP 2006 12

Hardware structure:

i.e. a graph with

• vertices = storage devices

• edges = data paths through processing/transport devices

cache

H. Simma, LaP 2006 13

What are the hardware parameters?

(to be determined from data sheets or micro-benchmarks)

Storage devices:

σi = storage size

Data units: bit, byte, fword, cword, . . .

Processing/transport devices:

ISA = instruction set architecture

βi = bandwidth (data throughput/time)

λi = latency (delay between input and first output)

Time units: nsec, Tclk (clock cycle)

N.B.: For storage access one might need: λ = λ0 + δ(a, a′, n, n′)

H. Simma, LaP 2006 14

Hardware examples:
parameter unit PC BG/L APE
fclk [GHz] 2 0.7 0.14
data format [1 word] s d d
βRR [flop/clk] 4 s 8 d 8 d
σR [word] ≤ 100 64 512
cache L2 L3 —
βRC [word/clk] 4 2 —
σC [word] 0.5 M 0.5 M —
βCM [word/clk] 1/8 1 2
λCM [clk] ≥ 100 ≥ 30 ≈ 20
βPP ′ [word/clk] 0.1 0.03× 16 0.1× 12
λPP ′ [clk] ≥ 2000 ≈ 700 ≈ 40

H. Simma, LaP 2006 15

Analysis of Computational Tasks (and their Implementation)

Instruction Match

Matching between required operations and machine instructions (ISA)

• single vs. double precision

• real vs. complex

• multiply/add vs. MulAdd

• alignment constraints (of vector or “SIMD” instructions)

• . . .

Example: ISA has only complex MulAdd (possibly with complex conjugation)

kernel flop needed MulAdd used εmax

sum of real numbers N N 12.5 %
linear combination a · x + y N × 8 N 100 %
dot product (x, y) N × 8− 2 N ≈100 %
norm ||x||2 N × 4 N 50 %
Dirac operator Dφ 166× 8 276 60 %

H. Simma, LaP 2006 16

Data Flow

Consider dependency graph of instructions (DAG = directed acyclic graph)

• vertices = (groups of) instructions

• edges = (intermediate) data ⇒ partial order

Example:

s =
N∑

i=0

xi → sn =
N/K∑
i=0

xnK+i

✰ Critical path ' “height” ⇒ minimal latency-limited execution time

H. Simma, LaP 2006 17

Example:

z = x + y

“causal cuts” = possible time-order (scheduling)

✰ Flow accross cut ⇒ storage requirement

H. Simma, LaP 2006 18

Example:

DFT → FFT

arbitrary cuts = possible parallelisations

✰ Flow accross cut ⇒ communication requirement

H. Simma, LaP 2006 19

Information Exchange

IXY (N,σ) ≡ data exchange for specific computational task of size N
between computer sub-systems X and Y with storage σX

where X, Y = registers (R), memory (M), cache (C), processors (P, P ′), . . .

More explicit: For one or more implementations compute separately

• IXY (N)⇒ bandwidth requirements

• SX(N)⇒ storage requirements

Execution time estimate:

TXY ≈ IXY · βXY + O(λXY)

(if SX < σX, otherwise split tasks)

N.B.:
Nops ∼ IRR , Rops =

IRR

IRM
, Rrem =

IPP ′

IRM

H. Simma, LaP 2006 20

Optimisation Strategies and Tradeoffs

Try to combine, re-arrange or modify computational tasks
to reduce data flow through time-critical paths

⇒ typical conflicts:

• SR vs. IRC (I/O overhead)

• SC vs. ICM (cache misses)

• SM vs. IPP ′ (communication overhead)

H. Simma, LaP 2006 21

Example: matrix × vector

yi =
∑

j

Mijvj (i, j = 1, . . . , N)

Implementation without cache

SC = 0
IRM = 2N2 + N

Optimally cached implementation

SC ≤ 1 . . . 2N

ICM = N2 + 2N

Block-wise implementation

SC ≤ 2B

ICM = N2 + 2N+
(

N
B − 1

)
· 2N

H. Simma, LaP 2006 22

Analysis of the Wilson-Dirac Operator

Hopping term:

[Dφ]x ≡
4∑

µ=1

{U(x, µ)(1− γµ)φ(x + µ̂) + · · ·}

Implementation without cache

SC = 0
IRM/v = (8 + 1)|φ|+ 8|U | = 180 cword

(v = number of lattice sites, |φ| = size of φ per site)

H. Simma, LaP 2006 23

Optimally cached implementation

SC/v = 1|φ|+ 4|U | = 48 cword

ICM/v = 2|φ|+ 4|U | = 60 cword

IRC/v = (8 + 1)|φ|+ 8|U | = 180 cword

Partially cached implementation

• Work on 4-d sub-lattices with v′ ≡ l′x × l′y × l′z × l′t sites and

a′+ ≡ v′
∑

i

1
l′i

sites on surfaces in positive direction

• Holding all sites of sub-lattice in cache requires

SC/v′ ≥ 1|φ|+ 4|U |
ICM/v = 2|φ|+ 4|U | + (2|φ|+ |U |) · a′+/v′

• For minimal surface a′+/v′ choose l′x = l′y = l′z = l′t (⇒ a′+/v′ = 4/l′t)

H. Simma, LaP 2006 24

Parallel implementation

Local lattice on each node:
v ≡ lx × ly × lz × lt

Sites on positive surfaces of local lattice:

a+ ≡ v
∑

k:lk 6=Lk

1
lk

IPP ′ = (2|φ|+ |U |) · 2a+ = 66 · a+ cword

Pre-distributed U

Prepare auxiliary array U ′(x, µ)← U(x + µ̂, µ)
to guarantee that all U fields are available locally when needed

IPP ′ =
(
2|φ|+ O

(1
Nit

)
|U |

)
· 2a+ ≈ 48 · a+ cword

but increased storage requirement SM/v = Nφ|φ|+ (4 + d) · |U |

H. Simma, LaP 2006 25

Intermediate 2-spinors

DAG of hopping term in one direction:

H. Simma, LaP 2006 26

• Projection on 2-spinors:
p±µ (x) = (1∓ γµ) · φ(x)

• Multiplication with pre-distributed U before or after communication

q±µ (x) = U(. . . , µ) · p±µ (x± µ̂)

• Reconstruction of 4-spinor:

φ′(x) =
∑

µ

{
R+

µ

(
q+
µ (x)

)
+ R−

µ

(
q−µ (x)

)}

⇒ reduced communications

IPP ′ =
(
1|φ|+ O

(1
Nit

)
|U |

)
· 2a+ ≈ 24 · a+ cword

but increased register I/O to cache (or memory)

IRC/v = (1 + 8
2 + 8

2 + 1)|φ|+ 8|U | = 192 cword

SC/v ≥ 8
2|φ| = 48 cword

H. Simma, LaP 2006 27

Examples at algorithmic level

Iterative solvers:

Combine differnt point-operations while data in registers/cache

Example:

• s← r + β · s

• q ← A · s

• global (s, q)

• set α← (r,r)
(s,q)

➜

• compute locally

s ← r + β · s
q ← A · s

(s, q)loc

• compute global (s, q) and set

α← (r,r)
(s,q)

ICM/v = 7|φ| ➜ ICM/v = 4|φ|

H. Simma, LaP 2006 28

Even-odd peconditioning:

• ICM , SC, SM ∼ Nφ|φ|+ NU |U | →
Nφ

2 |φ|+ NU |U |

• might keep some U in registers/cache for DeoDoe

• might work on 5 time slices

Schwarz Alternating Procedure:

• natural decomposition into cache-friendly domains

• IPP ′ → 1
NMR

IPP ′

H. Simma, LaP 2006 29

Summary

Simple methodology for performance modeling based on

• general hardware model parametrized by

– storage sizes
– bandwidths
– latencies

• analysis of computational tasks in terms of

– instruction and storage requirements
– data dependencies between operations
– information exchange between hardware sub-systems

. . . can be applied at different levels accuracy

. . . may help to select/improve

– algorithms
– implementations
– system software and hardware

H. Simma, LaP 2006 30

